
Learning Latent Representations
to Influence Multi-Agent Interaction

Annie Xie1, Dylan P. Losey2, Ryan Tolsma1, Chelsea Finn1, and Dorsa Sadigh1

1Stanford University, 2Virginia Tech

Abstract: Seamlessly interacting with humans or robots is hard because these
agents are non-stationary. They update their policy in response to the ego agent’s
behavior, and the ego agent must anticipate these changes to co-adapt. Inspired by
humans, we recognize that robots do not need to explicitly model every low-level
action another agent will make; instead, we can capture the latent strategy of other
agents through high-level representations. We propose a reinforcement learning-
based framework for learning latent representations of an agent’s policy, where
the ego agent identifies the relationship between its behavior and the other agent’s
future strategy. The ego agent then leverages these latent dynamics to influence the
other agent, purposely guiding them towards policies suitable for co-adaptation.
Across several simulated domains and a real-world air hockey game, our approach
outperforms the alternatives and learns to influence the other agent1.

Keywords: multi-agent systems, human-robot interaction, reinforcement learning

1 Introduction
Although robot learning has made significant advances, most algorithms are designed for robots
acting in isolation. In practice, interaction with humans and other learning agents is inevitable.
Such interaction presents a significant challenge for robot learning: the other agents will update
their behavior in response to the robot, continually changing the robot’s learning environment. For
example, imagine an autonomous car that is learning to regulate the speed of nearby human-driven
cars so that it can safely slow those cars if there is traffic or construction ahead. The first time you
encounter this autonomous car, your intention is to act cautiously: when the autonomous car slows,
you also slow down. But when it slowed without any apparent reason, your strategy changes: the
next time you interact with this autonomous car, you drive around it without any hesitation. The
autonomous car — which originally thought it had learned the right policy to slow your car — is
left confused and defeated by your updated behavior!

To seamlessly co-adapt alongside other agents, the robot must anticipate how the behavior of these
other agents will change, and model how its own actions affect the hidden intentions of others. Prior
works that study these interactions make restrictive assumptions about the other agents: treating the
other agents as stationary [1, 2, 3, 4, 5], sharing a learning procedure across other agents [6, 7, 8],
directly accessing the underlying intentions and actions of other agents [4, 9, 10, 5, 11, 12], or
simplifying the space of intentions with hand-crafted features [13, 14, 15, 16, 17, 18].

By contrast, we focus on general settings where the ego agent (e.g., a robot) repeatedly interacts with
non-stationary, separately-controlled, and partially-observable agents. People seamlessly deal with
these scenarios on a daily basis (e.g., driving, walking), and they do so without explicitly modeling
every low-level aspect of each other’s policy [19]. Inspired by humans, we recognize that:
The ego agent only observes the low-level actions of another agent, but — just as in human-human
interaction — it is often sufficient to maintain a high-level policy representation. We refer to this
representation as the latent strategy, and recognize that latent strategies can change over time.

Learning the other agent’s strategy allows the robot to anticipate how they will respond during the
current interaction. Furthermore, modeling how the latent strategy changes over time — i.e., the
latent dynamics — enables the robot to predict how its own behavior will influence the other agent’s

1Videos of our results are available at our project webpage: https://sites.google.com/view/latent-strategies/.

4th Conference on Robot Learning (CoRL 2020), Cambridge MA, USA.

https://sites.google.com/view/latent-strategies/

Figure 1: Ego agent learning to play hockey against a non-stationary robot. The other robot updates its policy
between interactions to exploit the ego agent’s weaknesses. Over repeated interactions, the ego agent learns to
represent each opponent policy as a high-level latent strategy, z, and also recognizes that the opponent updates z
to aim away from where the ego agent last blocked. The ego agent leverages these latent dynamics to influence
the other robot, learning a policy that guides the opponent into aiming where the ego agent can block best.

future intentions (see Fig. 1). Overall, we leverage latent representations of the other agent’s policy
to make the following contributions towards learning in non-stationary multi-agent interaction:

Learning Latent Representations. We introduce an RL-based framework for multi-agent interac-
tion that learns both latent strategies and policies for responding to these strategies. Our framework
implicitly models how another agent’s strategy changes in response to the ego agent’s behavior.

Influencing Other Agents. Ego agents leveraging our proposed approach are encouraged to pur-
posely change their policy to influence the latent strategies of other agents, particularly when some
strategies are better suited for co-adaptation than other strategies.

Testing in Multi-Agent Settings. We compare our approach to state-of-the-art methods across four
simulated environments and a real robot experiment, where two 7-DoF robot arms play air hockey.
Our approach outperforms the alternatives, and also learns to influence the other agent.

2 Related Work
Opponent Modeling. Several prior works in multi-agent RL (MARL) and human-robot interaction
(HRI) handle non-stationary interactions by modeling the other agents. These approaches either
model intention [20, 21], assume an assignment of roles [22], exploit opponent learning dynam-
ics [11, 23], or incorporate features of opponent behavior, which can be modeled using a recursive
reasoning paradigm [24], handcrafted [9], or learned [5, 25, 26]. Since explicitly modeling and
reasoning over the opponent’s intentions or policy can quickly become computationally intractable,
we sidestep this recursion by learning a low-dimensional representation of the other agent’s behav-
ior. Unlike prior works with learned models, however, we recognize that this representation can
dynamically change and be influenced by the ego agent’s policy.

Multi-Agent RL. Alternate approaches have adopted a centralized training framework [7, 8, 27] or
learned communication protocols between agents [28, 6, 29, 30]. We do not require either centraliza-
tion or communication: hence, our approach can operate in more general multi-agent systems, such
as those with humans or decentralized agents. Notably, our setting does make a different assump-
tion — that other agents have predictable strategies which can be captured by latent representations.
Although this is not always the case (e.g., when other agents are RL-based), our assumption is
reasonable in a wide range of scenarios, especially when interacting with humans [19].

Influence Through Interactions. Influential behaviors emerge in MARL by directly shaping other
agents’ policy updates [11] and maximizing the mutual information between agents’ actions [31].
While these works encourage influencing by modifying the learning objective, e.g., through auxil-
iary rewards [31], in our approach influence arises without any explicit reward or encouragement.
Within HRI, most prior work studies influence in the context of a single interaction. In particular,
robots have demonstrated influence over humans by leveraging human trust [18, 32], generating legi-
ble motions [33], and identifying and manipulating structures that underlie human-robot teams [34].
Other works model the effects of robot actions on human behavior in driving [35, 36] and han-
dover [37] scenarios in order to learn behavior that influences humans. Unlike these works, we learn
to influence without recovering or accessing the other agent’s reward function.

Partial Observability in RL. We can view our setting as an instantiation of the partially observable
Markov Decision Process (POMDP) [38], where the other agent’s hidden strategy is the latent state.

2

Approximate POMDP solutions based on representation learning have scaled to high-dimensional
state and action spaces [39] such as image observations [40, 41]. However, we assume the other
agent’s latent strategy is constant throughout an episode, and then changes between episodes: we
exploit this structure by modeling the ego agent’s environment as a sequence of hidden parameter
MDPs (HiP-MDP) [42]. Recent work [43] similarly models non-stationary environments as a series
of HiP-MDPs, but assumes that the hidden parameters evolve independently. Unlike this work, we
recognize that the ego agent’s behavior can also influence the other agent’s latent strategy.

Robotic Air Hockey. Finally, prior works have also developed robots that play air hockey, focusing
on vision-based control for high-speed manipulation [44, 45, 46, 47]. Motivated by a similar objec-
tive to ours, Namiki et al. [48] hand-design a system that switches strategies based on the opponent.
However, we aim to autonomously learn both the opponent’s strategies and how to respond to them.

3 Repeated Interactions with Non-Stationary Agents
In this section we formalize our problem statement. Although our approach will extend to situations
with N other agents, here we focus on dyads composed of the ego agent and one other agent. This
other agent could be an opponent in competitive settings or a partner in collaborative settings.

Recall our motivating example, where an autonomous car (the ego agent) is learning to regulate the
speed of a human-driven car (the other agent) for safety in heavy traffic or construction zones. This
specific autonomous car and human-driven car have a similar commute, and encounter each other
on a daily basis. Over these repeated interactions, the human continually updates their policy: e.g.,
shifting from following to avoiding, and then back to following after the autonomous car establishes
trust. The autonomous car has access to the history of interactions, including being able to sense the
human-driven car’s speed and steering angles. Inspired by our insight, the autonomous car assumes
that these low-level actions are the result of some high-level intention sufficient for coordination:
the human driver’s policy is therefore captured by the latent strategy z. During each interaction, z
is constant — e.g., the human’s strategy is to follow the autonomous car — but z changes between
interactions according to the human driver’s latent dynamics. Importantly, the ego agent never
explicitly observes the hidden intentions of the other agent, and therefore must learn both the latent
strategies and their latent dynamics from local, low-level observations.

Strategy Affects Transitions and Rewards During Interaction. Let i index the current interaction,
and let latent strategy zi be the low-dimensional representation of the other agent’s policy during
the i-th interaction. We formulate this interaction as a hidden parameter Markov decision process
(HiP-MDP) [42]. Here the HiP-MDP is a tuple Mi = 〈S,A,Z, T , R,H〉, where s ∈ S is the
state of the ego agent and a ∈ A is the ego agent’s action. From the ego agent’s perspective, the
other agent’s policy affects the environment: if the human’s strategy is to avoid the autonomous car,
this may induce other cars to also pass (altering the system dynamics), or prevent the autonomous
car from successfully blocking (changing the reward). Accordingly, we let the unknown transition
function T (s′ | s, a, zi) and the reward function R(s, zi) depend upon the latent strategy zi ∈ Z .
The interaction ends after a fixed number of timesteps H . Over the entire interaction, the ego agent
experiences the trajectory τ i = {(s1, a1, r1), . . . , (sH , aH , rH)} of states, actions, and rewards.

Strategy Changes Between Interactions. In response to the ego agent’s behavior for the i-th inter-
action, the other agent may update its policy for interaction i+1. For example, imagine following an
autonomous car which brakes irrationally. The next time you encounter this car, it would be natural
to switch lanes, speed up, and move away! We capture these differences in low-level policy through
changes in the high-level strategy, such that z has Markovian latent dynamics: zi+1 ∼ f(· | zi, τ i).
Strategies are Influenced Across Repeated Interactions. Combining our formalism both during
and between interactions, we arrive at the complete problem formulation. Over repeated interactions,
the ego agent encounters a series of HiP-MDPs (M1,M2,M3, . . .), where the other agent has latent
strategy zi inMi. The ego agent’s objective is to maximize its cumulative discounted reward across
interactions. Because the other agent changes its policy in response to the ego agent, our problem
is not as simple as greedily maximizing rewards during each separate interaction. Instead, the ego
agent should purposely influence the other agent’s strategy to achieve higher long-term rewards.
For example, suddenly stopping during the current interaction may cause the human to immediately
slow down, but in future interactions the human will likely avoid our autonomous car altogether!
Thus, an intelligent agent should take actions that will lead to being able to slow the human when
needed, such as in traffic or near construction zones.

3

Figure 2: Our proposed approach for learning and leveraging latent intent. Left: Across repeated interactions,
the ego agent uses their previous experience τ i−1 to predict the other agent’s current latent strategy zi, and then
follows a policy π conditioned on this prediction. Right: The ego agent learns by sampling a pair of consecutive
interactions, and (a) training the encoder E and decoderD to correctly predict experience τk given τk−1, while
simultaneously (b) using model-free RL to maximize the ego agent’s long-term reward.

4 Learning and Influencing Latent Intent (LILI)
In this section we present our proposed approach to learn and influence latent strategies in multi-
agent interaction. Refer to Fig. 2 for an overview: the ego agent simultaneously learns an encoder —
which captures the other agent’s latent strategy from low-level observations — and a policy — which
is conditioned on the inferred latent strategy. During each interaction, the robot predicts what the
other agent’s strategy will be based on their last interaction, and reacts using its strategy-conditioned
policy. In what follows, we explain the different aspects of this approach.

4.1 Learning Latent Strategies from Local Observations

Our first step is to learn to represent the behavior of other agents. Recall that during the i-th inter-
action the ego agent experiences τ i, a trajectory of local states, actions, and rewards. We leverage
this local experience τ i to anticipate zi+1, the latent strategy that the other agents will follow during
the next interaction. More specifically, we introduce an encoder Eφ that embeds the experience τ i

and predicts the subsequent latent strategy zi+1. Hence, Eφ models f(zi+1 | τ i), an approximation
of the latent dynamics f(zi+1 | zi, τ i). We use this approximation because the other agent’s current
strategy zi can often be inferred from the ego agent’s experience τ i, and we find that this functional
form works well across our experimental domains. However, the actual strategies of the other agents
are never explicitly observed — how can we learn our encoder without these labels?

To address this challenge, we recognize that the latent strategy of the other agent determines how
they will react to the ego agent’s behavior, which in turn determines the dynamics and reward func-
tions experienced by the ego agent during the current interaction. We therefore decode the latent
strategy zi+1 using a decoder Dψ that reconstructs the transitions and rewards observed during in-
teraction i+1. Given a sequence of interactions τ1:N , we train our encoder Eφ and decoderDψ with
the following maximum likelihood objective Jrep:

max
φ,ψ

N∑
i=2

H∑
t=1

log pφ,ψ(s
i
t+1, r

i
t | sit, ait, τ i−1) (1)

where Eφ produces a deterministic embedding zi given τ i−1, and Dψ outputs a distribution over
next state st+1 and reward rt given current state st, action at, and embedding zi. The encoder is
particularly important here: we can use Eφ to anticipate the other agent’s next strategy.

4.2 Reinforcement Learning with Latent Strategies

Given a prediction of what latent strategy the other agent is following, the ego agent can intelligently
react. Imagine that the autonomous car in our example knows that the human’s strategy is to pass if

4

the autonomous car slows significantly, and the autonomous car is approaching heavy traffic. Under
this belief, the autonomous car should slow gradually, keeping the human behind as long as possible
to reduce their speed. But if — instead — the agent thinks that the human will also slow down with
it, the agent can immediately brake and regulate the human to a safe speed. In other words, different
latent strategies necessitate different policies. We accordingly learn an ego agent policy πθ(a | s, zi),
where the ego agent makes decisions conditioned on the latent strategy prediction zi = Eφ(τ i−1).

4.3 Influencing by Optimizing for Long-Term Rewards

What we ultimately want is not for the ego agent to simply react to the predicted latent strategy;
instead, an intelligent agent should proactively influence this strategy to maximize its reward over
repeated interactions. The key to this proactive behavior is Eφ, the ego agent’s approximation of the
latent dynamics. As the ego agent learns Eφ, it can purposely alter the interaction τ i to influence the
other agents towards a desired zi+1. Crucially, some latent strategies zi+1 may be better than others.

Jumping back to our example, the autonomous car is rewarded for regulating the human-driven car’s
speed near heavy traffic and construction zones. The human’s strategies {z1, z2} ∈ Z include avoid-
ing and passing the autonomous car (z1) or trusting and following the autonomous car (z2). From
the ego agent’s perspective, z2 is a better latent strategy: if the autonomous car guides the human
towards this strategy, it can safely reduce the human’s speed when necessary. To learn influential
behavior, we train the ego agent policy πθ to maximize rewards across multiple interactions:

max
θ

∞∑
i=1

γi Eρiπθ

[
H∑
t=1

R(s, zi)

]
(2)

where γ ∈ [0, 1) is a discount factor and ρiπθ (τ) is the trajectory distribution induced by πθ under
dynamics T (s′|s, a, zi). Maximizing this RL objective naturally motivates the ego agent to influence
the other agent. Specifically, the ego agent learns to generate interactions τ i which lead the other
agent to adopt future latent strategies that the ego agent can exploit for higher rewards. Within our
example, the ego agent purposely establishes trust with the speeding human, guiding them towards
the advantageous z2 before gradually reducing speed near traffic or construction.

4.4 Implementation

Algorithm 1 Learning and Influencing Latent Intent (LILI)
Require: Learning rates αQ, απ , αφ, αψ

1: Randomly initialize θQ, θπ , φ, and ψ
2: Initialize empty replay buffer B
3: Assign z1 ← ~0
4: for i = 1, 2, . . . do
5: Collect interaction τ i with πθ(a|s, zi)
6: Update replay buffer B[i]← τ i

7: for j = 1, 2, . . . , N do
8: Sample batch of interaction pairs (τ, τ ′) ∼ B
9: θQ ← θQ − αQ∇θQJQ . Critic update

10: θπ ← θπ − απ∇θπJπ . Actor update
11: φ← φ− αφ∇φ (JQ − Jrep) . Encoder update
12: ψ ← ψ + αψ∇ψJrep . Decoder update
13: Assign zi+1 ← Eφ(τ i)

The encoder Eφ and decoder Dψ
are implemented as fully-connected
neural networks. The encoder out-
puts the embedding zi+1 given tuples
(s, a, s′, r) sampled from interaction
τ i, while the decoder reconstructs
the transitions and rewards from τ i+1

given the embedding, states, and ac-
tions taken. For the RL module, we
use soft actor-critic (SAC) [49] as
the base algorithm. The actor π and
critic Q are both fully-connected net-
works that are conditioned on state s
and embedding z, and trained with
losses Jπ and JQ from SAC. The
pseudocode for our proposed method,
Learning and Influencing Latent In-
tent (LILI), is provided in Algorithm 1. Additional details can also be found in Appendix A.

5 Experiments
A key advantage of our approach is that it enables the ego agent to connect low-level experiences
to high-level representations. However, it is not yet clear whether the ego agent can simultaneously
learn these high-level representations and intelligently leverage them for decision making. Thus,
we here compare our approach to state-of-the-art learning-based methods, some of which also uti-
lize latent representations. We focus on whether the ego agent learns to influence the other agent,
and whether this influence leads to greater overall performance. Videos of our results are in the
supplementary video and our project webpage: https://sites.google.com/view/latent-strategies/.

5

https://sites.google.com/view/latent-strategies/

Figure 3: Simulated environments where the ego agent learns alongside another non-stationary agent. Between
interactions, this other agent updates its policy: e.g., moving a hidden target or switching the lane it will merge
into. Our approach learns the high-level strategies guiding these policies so both agents seamlessly co-adapt.

We select four different learning-based methods that cover a spectrum of latent representations:
• SAC [49]. At one extreme is soft actor critic (SAC), where the ego agent does not learn any latent

representation. This is equivalent to our Algorithm 1 without latent strategies.
• SLAC [41]. In the middle of the spectrum is stochastic latent actor-critic (SLAC), which learns

latent representations for a partially observable Markov decision process (POMDP). Within this
formulation the other agent’s latent strategy could be captured by the POMDP’s hidden state.

• LILAC [43]. Similar to our approach, lifelong latent actor-critic (LILAC) learns a latent represen-
tation of the ego agent’s environment. However, the latent dynamics in LILAC are only influenced
by the environment and unaffected by the ego agent’s behavior, such that zi+1 ∼ f(· | zi).

• Oracle. At the other extreme is an oracle, which knows the other agent’s hidden intention.
We also consider two versions of our approach (Algorithm 1). LILI (No Influence) is a simplified
variant where the ego agent is trained to make greedy decisions that maximize its expected return
for the current interaction, without considering how these decisions may influence the other agent’s
future behavior. Our full approach is referred to as LILI, where the ego agent tries to maximize
its discounted sum of rewards across multiple interactions while taking into account how its own
actions may influence the other agent’s downstream policy.

5.1 Simulated Environments and Multi-Agent Experimental Setup

Our simulated environments are visualized in Fig. 3, and our real robot experiment is shown in
Fig. 1. All environments have continuous state-action spaces, with additional details in Appendix B.

Point Mass. Similar to pursuit-evasion games [50], the ego agent is trying to reach the other agent
(i.e., the target) in a 2D plane. This target moves one step clockwise or counterclockwise around
a circle depending on where the ego agent ended the previous interaction (see Fig. 3). Importantly,
the ego agent never observes the location of the target! Furthermore, because the ego agent starts
off-center, some target locations can be reached more efficiently than others.

Lunar Lander. A modified version of the continuous Lunar Lander environment from OpenAI Gym
[51]. The ego agent is the lander, and the other agent picks the target it should reach. Similar to
point mass, the ego agent never observes the location of the target, and must infer the target position
from rewards it receives — but unlike point mass, the latent dynamics here do not depend on τ i.

Driving (2D and CARLA). The ego agent is trying to pass another driver. This other agent rec-
ognizes that the lane in which the ego agent passes is faster — and will suddenly merge into this
lane during the next interaction. Hence, the ego agent must anticipate how the other car will drive

6

Figure 4: Results for Point Mass. (Left) Reward that the ego agent receives at each interaction while learning.
(Right) Heatmap of the target position during the final 500 interactions. The ego agent causes the target to move
clockwise or counterclockwise by ending the interaction in-or-out of the circle. Our approach LILI exploits
these latent dynamics to trap the target close to the start location, decreasing the distance it must travel.

Figure 5: Results for other simulations. Because each latent strategy was equally useful to the ego agent, here
LILI (no influence) is the same as LILI. Shaded regions show standard error of the mean.

to avoid a collision. We performed two separate simulations with these rules. In Driving (2D), we
use a simple driving environment where the ego agent controls its lateral displacement. In Driving
(CARLA), we use a 3D simulation where the ego agent must control the vehicle steering [52].

Air Hockey. A real-world air hockey game played between two 7-DoF robots (and later between
one robot and human). The ego agent is the blocker, while the other agent is the striker. The striker
updates their policy to shoot away from where the ego agent last blocked. When blocking, the ego
robot does not know where the striker is aiming, and only observes the vertical position of the puck.
We give the ego robot a bonus reward if it blocks a shot on the left of the board — which should
encourage the ego agent to influence the striker into aiming left. See Appendix C for more info.

5.2 Simulation Results: Trapping the Other Agent in Point Mass

The simulation results are summarized in Figs. 4 and 5. Across all domains, the proposed method
achieves higher returns than existing RL-based algorithms, and nearly matches oracle performance.

Point Mass. To better explain these results, we specifically focus on the Point Mass domain (Fig. 4).
During each timestep the ego agent incurs a cost for its squared Euclidean distance from the hidden
target. If the ego agent is confused by the changing environment — and unable to model the target
dynamics — a safe play is simply to move to the center of the circle. Indeed, this behavior is
exactly what we see in LILAC, the best-performing baseline. But what if the ego agent successfully
models the latent dynamics? A greedy ego agent will try to get as close as it can to the target,
without considering if it ends the interaction inside or outside of the circle. We observed this naı̈ve
pursuit in LILI (no influence), where the ego agent accurately reached the target at each interaction.
However, because the ego-agent starts closer to some target locations than others, precisely reaching
the target is not always the best long-term plan; instead, it is better to purposely over- or under-shoot,
influencing the target towards the start location. As depicted, LILI converges to this final policy that
traps the other agent. Here the ego agent exploits the latent dynamics, intentionally moving in-and-
out of the circle to cause the target to oscillate near the start. Accordingly, LILI achieves higher
rewards than LILI (no influence), and almost matches the gold standard of Oracle.

Other Simulations. Learning results for our remaining domains are shown in Fig. 5. We emphasize
that — because each of the other agent’s strategies in these settings is equally beneficial for the ego
agent — here LILI results in the same performance as LILI (no influence). Further analysis of
these results is available in Appendix D.

7

Figure 6: Learning results for the air hockey experiment. (Left) Success rate across interactions. (Right) How
frequently the opponent fired left, middle, or right during the final 200 interactions. Because the ego agent
receives a bonus reward for blocking left, it should influence the opponent into firing left. At convergence,
LILI (no influence) gets an average reward of 1.0± 0.05 per interaction, while LILI gets 1.15± 0.05.

Complex Strategies. So far the other agent’s strategy has been relatively straightforward. To better
understand the robustness of LILI, we next apply our approach to more complex settings. Specifi-
cally, we introduce two different factors to the other agent’s strategy: i) noisy latent dynamics and
ii) latent dynamics that depend on multiple previous interactions. Our results, presented in Ap-
pendix E, demonstrate that LILI is robust to significant levels of noise and is capable of modeling
(and influencing) non-Markovian strategies that depend on reasonably long interaction histories.

5.3 Air Hockey Results: Learning to Play Against Robot and Human Opponents

Building on our simulation results, we perform a real-robot hockey experiment (see Supplementary
Video). The ego agent learns alongside a robot opponent, and then plays against a human opponent.
Both human and robot update their policy to aim for the ego agent’s weak side.

Learning with a Robot Opponent. Our learning results are summarized in Fig. 6. When moving
randomly, the ego agent blocks the puck 18% of the time. By contrast, SAC learns to specialize in
blocking one half of the board — either right or left — and converges to a success rate of 44% over
the final 100 interactions. Only our proposed approach is able to co-adapt with all of the opponent’s
changing intentions: LILI blocks the puck in 91% of the last 100 interactions.

Next, recall that the ego agent receives a bonus for blocking on the left side of the board. LILI (no
influence) fails to guide the opponent into taking advantage of this bonus: the distribution over the
opponent’s strategies is uniform. However, LILI causes the opponent to strike left 41% of the time.
By rule, the striker always changes where they fire: so here the ego agent manipulates the striker
into alternating between the left and middle strategies (see example in Fig. 1).

Playing Against a Human Expert. We also deploy the converged policies for SAC and LILI (no
influence) against an expert human. Like the robot striker, this human aims away from where the ego
agent blocked during the previous interaction. The human was given 10 minutes to practice striking
the puck, and then we recorded 40 consecutive interactions. Our proposed approach performs much
better when playing alongside the non-stationary human: SAC blocks 45% of shots (18/40), while
LILI (no influence) blocks 73% (29/40). Please see the supplementary video for examples.

6 Discussion
Summary. We proposed a framework for multi-agent interaction that represents the low-level poli-
cies of non-stationary agents with high-level latent strategies, and incorporates these strategies into
an RL algorithm. Robots with our approach were able to anticipate how their behavior would affect
another agent’s latent strategy, and actively influenced that agent for more seamless co-adaptation.

Limitations. We originally intended to test our approach LILI with human opponents, but we found
that — although LILI worked well when playing against another robot — the learned policy was
too brittle to interact alongside humans. Specifically, LILI learned to block the puck with the edges
of its paddle, which led to more failures when humans shot imperfectly. Future work will therefore
improve the robustness of our algorithm by learning under noisier conditions and fine-tuning the
policy on humans. Finally, instead of training alongside artificial agents, we also hope to study the
human-in-the-loop setting to adapt to the dynamic needs and preferences of people.

8

Acknowledgments

This work was supported by NSF Award #1941722 and #2006388, ONR grant N00014-20-1-2675,
and JPMorgan Chase & Co. Any views or opinions expressed herein are solely those of the authors
listed, and may differ from the views and opinions expressed by JPMorgan Chase & Co. or its
affiliates. This material is not a product of the Research Department of J.P. Morgan Securities LLC.
This material should not be construed as an individual recommendation for any particular client and
is not intended as a recommendation of particular securities, financial instruments or strategies for a
particular client. This material does not constitute a solicitation or offer in any jurisdiction.

References
[1] B. D. Davison and H. Hirsh. Predicting sequences of user actions. In Workshops at the AAAI Conference

on Artificial Intelligence, 1998.
[2] P. Stone, P. Riley, and M. Veloso. Defining and using ideal teammate and opponent agent models: A case

study in robotic soccer. In Proceedings Fourth International Conference on MultiAgent Systems, 2000.
[3] R. Mealing and J. L. Shapiro. Opponent modeling by expectation–maximization and sequence prediction

in simplified poker. IEEE Transactions on Computational Intelligence and AI in Games, 2015.
[4] S. V. Albrecht, J. W. Crandall, and S. Ramamoorthy. E-hba: Using action policies for expert advice and

agent typification. In Workshops at the Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.
[5] A. Grover, M. Al-Shedivat, J. K. Gupta, Y. Burda, and H. Edwards. Learning policy representations in

multiagent systems. arXiv preprint arXiv:1806.06464, 2018.
[6] J. Foerster, I. A. Assael, N. De Freitas, and S. Whiteson. Learning to communicate with deep multi-agent

reinforcement learning. In Advances in neural information processing systems, pages 2137–2145, 2016.
[7] R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. P. Abbeel, and I. Mordatch. Multi-agent actor-critic for mixed

cooperative-competitive environments. In Advances in neural information processing systems, 2017.
[8] J. N. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson. Counterfactual multi-agent policy

gradients. In Thirty-second AAAI conference on artificial intelligence, 2018.
[9] H. He, J. Boyd-Graber, K. Kwok, and H. Daumé III. Opponent modeling in deep reinforcement learning.

In International Conference on Machine Learning, pages 1804–1813, 2016.
[10] P. Hernandez-Leal, Y. Zhan, M. E. Taylor, L. E. Sucar, and E. M. De Cote. Efficiently detecting switches

against non-stationary opponents. Autonomous Agents and Multi-Agent Systems, 31(4):767–789, 2017.
[11] J. Foerster, R. Y. Chen, M. Al-Shedivat, S. Whiteson, P. Abbeel, and I. Mordatch. Learning with opponent-

learning awareness. In International Conference on Autonomous Agents and MultiAgent Systems, 2018.
[12] R. Everett and S. Roberts. Learning against non-stationary agents with opponent modelling and deep

reinforcement learning. In 2018 AAAI Spring Symposium Series, 2018.
[13] R. Kelley, A. Tavakkoli, C. King, M. Nicolescu, M. Nicolescu, and G. Bebis. Understanding human

intentions via hidden markov models in autonomous mobile robots. In Proceedings of the 3rd ACM/IEEE
international conference on Human robot interaction, pages 367–374, 2008.

[14] T. Bandyopadhyay, K. S. Won, E. Frazzoli, D. Hsu, W. S. Lee, and D. Rus. Intention-aware motion
planning. In Algorithmic foundations of robotics X, pages 475–491. Springer, 2013.

[15] H. Bai, S. Cai, N. Ye, D. Hsu, and W. S. Lee. Intention-aware online pomdp planning for autonomous
driving in a crowd. In 2015 ieee international conference on robotics and automation (icra). IEEE, 2015.

[16] D. Sadigh, S. S. Sastry, S. A. Seshia, and A. Dragan. Information gathering actions over human internal
state. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2016.

[17] C. Basu, E. Biyik, Z. He, M. Singhal, and D. Sadigh. Active learning of reward dynamics from hierarchi-
cal queries. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2019.

[18] D. P. Losey and D. Sadigh. Robots that take advantage of human trust. In International Conference on
Intelligent Robots and Systems (IROS), 2019.

[19] A. Rubinstein and C.-j. Dalgaard. Modeling bounded rationality. MIT press, 1998.
[20] Z. Wang, K. Mülling, M. P. Deisenroth, H. Ben Amor, D. Vogt, B. Schölkopf, and J. Peters. Probabilistic

movement modeling for intention inference in human–robot interaction. The International Journal of
Robotics Research, 32(7):841–858, 2013.

[21] R. Raileanu, E. Denton, A. Szlam, and R. Fergus. Modeling others using oneself in multi-agent reinforce-
ment learning. arXiv preprint arXiv:1802.09640, 2018.

[22] D. P. Losey, M. Li, J. Bohg, and D. Sadigh. Learning from my partner’s actions: Roles in decentralized
robot teams. In Conference on Robot Learning, pages 752–765, 2020.

[23] C. Zhang and V. Lesser. Multi-agent learning with policy prediction. In Twenty-fourth AAAI conference
on artificial intelligence, 2010.

[24] C. Baker, R. Saxe, and J. Tenenbaum. Bayesian theory of mind: Modeling joint belief-desire attribution.
In Proceedings of the annual meeting of the cognitive science society, volume 33, 2011.

9

[25] N. C. Rabinowitz, F. Perbet, H. F. Song, C. Zhang, S. Eslami, and M. Botvinick. Machine theory of mind.
arXiv preprint arXiv:1802.07740, 2018.

[26] G. Papoudakis and S. V. Albrecht. Variational autoencoders for opponent modeling in multi-agent sys-
tems. arXiv preprint arXiv:2001.10829, 2020.

[27] M. Woodward, C. Finn, and K. Hausman. Learning to interactively learn and assist. In AAAI Conference
on Artificial Intelligence, 2020.

[28] A. Lazaridou, A. Peysakhovich, and M. Baroni. Multi-agent cooperation and the emergence of (natural)
language. arXiv preprint arXiv:1612.07182, 2016.

[29] S. Sukhbaatar, R. Fergus, et al. Learning multiagent communication with backpropagation. In Advances
in neural information processing systems, pages 2244–2252, 2016.

[30] I. Mordatch and P. Abbeel. Emergence of grounded compositional language in multi-agent populations.
In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[31] N. Jaques, A. Lazaridou, E. Hughes, C. Gulcehre, P. Ortega, D. Strouse, J. Z. Leibo, and N. De Freitas.
Social influence as intrinsic motivation for multi-agent deep reinforcement learning. In International
Conference on Machine Learning, pages 3040–3049, 2019.

[32] M. Chen, S. Nikolaidis, H. Soh, D. Hsu, and S. Srinivasa. Planning with trust for human-robot collabora-
tion. In Proceedings of the ACM/IEEE International Conference on Human-Robot Interaction, 2018.

[33] A. D. Dragan, K. C. Lee, and S. S. Srinivasa. Legibility and predictability of robot motion. In 2013 8th
ACM/IEEE International Conference on Human-Robot Interaction (HRI), pages 301–308. IEEE, 2013.

[34] M. Kwon, M. Li, A. Bucquet, and D. Sadigh. Influencing leading and following in human-robot teams.
In Robotics: Science and Systems, 2019.

[35] D. Sadigh, S. Sastry, S. A. Seshia, and A. D. Dragan. Planning for autonomous cars that leverage effects
on human actions. In Robotics: Science and Systems, volume 2. Ann Arbor, MI, USA, 2016.

[36] D. Sadigh, N. Landolfi, S. S. Sastry, S. A. Seshia, and A. D. Dragan. Planning for cars that coordinate
with people: Leveraging effects on human actions for planning and active information gathering over
human internal state. Autonomous Robots (AURO), 42(7):1405–1426, October 2018. ISSN 1573-7527.

[37] A. Bestick, R. Bajcsy, and A. D. Dragan. Implicitly assisting humans to choose good grasps in robot to
human handovers. In International Symposium on Experimental Robotics. Springer, 2016.

[38] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially observable stochastic
domains. Artificial intelligence, 101(1-2):99–134, 1998.

[39] M. Igl, L. Zintgraf, T. A. Le, F. Wood, and S. Whiteson. Deep variational reinforcement learning for
pomdps. arXiv preprint arXiv:1806.02426, 2018.

[40] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson. Learning latent dynamics
for planning from pixels. In International Conference on Machine Learning, pages 2555–2565, 2019.

[41] A. X. Lee, A. Nagabandi, P. Abbeel, and S. Levine. Stochastic latent actor-critic: Deep reinforcement
learning with a latent variable model. arXiv preprint arXiv:1907.00953, 2019.

[42] F. Doshi-Velez and G. Konidaris. Hidden parameter markov decision processes: A semiparametric re-
gression approach for discovering latent task parametrizations. In IJCAI, 2016.

[43] A. Xie, J. Harrison, and C. Finn. Deep reinforcement learning amidst lifelong non-stationarity. arXiv
preprint arXiv:2006.10701, 2020.

[44] B. E. Bishop and M. W. Spong. Vision-based control of an air hockey playing robot. IEEE Control
Systems Magazine, 19(3):23–32, 1999.

[45] W.-J. Wang, I.-D. Tsai, Z.-D. Chen, and G.-H. Wang. A vision based air hockey system with fuzzy
control. In Proceedings of the International Conference on Control Applications. IEEE.

[46] D. C. Bentivegna, A. Ude, C. G. Atkeson, and G. Cheng. Humanoid robot learning and game playing
using pc-based vision. In IEEE/RSJ international conference on intelligent robots and systems, 2002.

[47] M. Ogawa, S. Shimizu, T. Kadogawa, T. Hashizume, S. Kudoh, T. Suehiro, Y. Sato, and K. Ikeuchi. Devel-
opment of air hockey robot improving with the human players. In IECON 2011-37th Annual Conference
of the IEEE Industrial Electronics Society, pages 3364–3369. IEEE, 2011.

[48] A. Namiki, S. Matsushita, T. Ozeki, and K. Nonami. Hierarchical processing architecture for an air-
hockey robot system. In 2013 IEEE International Conference on Robotics and Automation. IEEE, 2013.

[49] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor. arXiv preprint arXiv:1801.01290, 2018.

[50] R. Vidal, O. Shakernia, H. J. Kim, D. H. Shim, and S. Sastry. Probabilistic pursuit-evasion games: theory,
implementation, and experimental evaluation. IEEE transactions on robotics and automation, 2002.

[51] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba. Openai
gym. arXiv preprint arXiv:1606.01540, 2016.

[52] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. Carla: An open urban driving simulator.
arXiv preprint arXiv:1711.03938, 2017.

[53] H. A. Simon. Models of bounded rationality: Empirically grounded economic reason, volume 3. MIT
press, 1997.

10

Appendix
COVID-19 Effects. We are fortunate to test our proposed approach on real world robots. However,
the extent of our experiments is limited by the current COVID pandemic. We originally planned
to conduct a full-scale user study, where 10+ human participants play hockey against our learning
agent. This study would focus on how LILI enables a robot to interact alongside humans who change
and update their policy in response to that robot. Unfortunately, local restrictions to lab access
prevented us from starting with the robots until mid-June. After setting up the hockey environment
and developing LILI & other algorithms, we performed a proof-of-concept pilot study right before
the deadline. As described in Section 6, we here found that LILI was not sufficiently robust for
an immediate user study. However, we feel that the necessary changes are straightforward — e.g.,
training against a noisier robot opponent — and therefore we believe that this user study will be
successful given normal access to robots and human participants.

A Implementation Details
Our encoder and decoder networks are both multilayer perceptrons with 2 fully-connected layers
of size 128 each, and we use a latent space size of 8. For the reinforcement learning module, the
policy and critic networks are MLPs with 2 fully-connected layers of size 256. During training, the
encoder network weights are updated with gradients from both the representation learning objective
Jrep and the critic loss JQ from the soft actor-critic algorithm.

B Experimental Details: Simulated Domains
B.1 Point Mass

In this environment, the ego agent must reach the target position, which is unknown to the ego.
Between interactions, the target z moves along a fixed-radius circle. In particular, if the ego agent’s
position after 50 timesteps is inside of the circle, then the target moves 0.2 radians clockwise after the
interaction. If the ego agent ends outside of the circle, the target moves 0.2 radians counterclockwise.
The reward function in this environment is in terms of the distance between the ego and target,
R(s, z) = −‖s− z‖2. For the oracle comparison, we augment the observation space with the target
position z.

B.2 Lunar Lander

The ego agent’s goal is to land on the launchpad with 2 controls (main engine and left-right engine),
the position z for which is unknown to the ego. The launchpad alternates between z = [0.4, 0.2] and
z = [−0.4, 0.2] at every interaction. Hence, the latent dynamics in the environment are independent
of the interactions, and evolve only as a function of time. At every time-step, the ego agent receives
reward,

R(s, a, z) = −‖spos − z‖22 − ‖svel‖22 − |sθ|
− 0.0015 ∗ (clip(a0, 0, 1) + 1)− 0.0003 ∗ clip(abs(a1), 0.5, 1),

where the spos denotes the lander’s x- and y-position, svel denotes the lander’s x- and y- velocities,
and sθ is the lander’s angle with respect to the ground. When the interaction terminates, the terminal
reward is

R(s, a, z) =
{
+1 if ‖spos − z‖2 < 0.1

−‖spos − z‖2 otherwise.

For the oracle, we augment the observation space with the position of the launchpad z.

B.3 Driving (2D)

In this simpler driving domain, the ego agent needs to pass the other agent, which is also quickly
switching lanes during the interaction. In interaction i, the other agent switches to the lane that the
ego agent last selected in interaction i− 1. Switching to the same lane as the other agent may cause
a collision, and the ego agent is given a reward of −1 if a collision occurs and 0 otherwise. The ego
agent observes its own position and the other agent’s position at each time-step, and the interaction
ends after 10 time-steps. The oracle agent is additionally given knowledge of the lane the other
agent plans to switch to as a one-hot vector.

11

B.4 Driving (CARLA)

In the CARLA simulations, our ego agent’s goal is to pass an opponent who alternates direction of
aggressive lane switches in order to block the lane that the ego agent selected in interaction i − 1.
Unlike the simpler Driving (2D) domain, the ego agent is exposed only to steering wheel angles
which affect direction and magnitude of velocity and acceleration. Likewise, the complexity of
the environment is increased by the inclusion of early termination for collisions or lane boundary
violations, causing episode lengths to vary from 5 to 20 time-steps. The ego agent is given a reward
of−1 for any collisions or lane violations and 0 otherwise. At each time-step, the ego agent observes
both the opponent’s and its own position, directional velocity, and angular velocity. The oracle agent
is given knowledge of the lane the opponent intends to veer towards as a one-hot vector.

C Experimental Details: Robotic Air Hockey
In this domain, we set up two Franka Emika Panda robot arms to play air hockey against one another.
Specifically, we designate the ego agent as the blocking robot and the other agent as the striking
opponent. The striking mode has three modes: aiming to the left, middle, and right, and switches
between these modes as described in Table 1.

Current Mode Next Mode

Left Left of ego? Middle
Right of ego? Right

Middle Left of ego? Left
Right of ego? Right

Right Left of ego? Center
Right of ego? Left

Table 1: The opponent is designed to aim away from the ego agent, based on the ego agent’s final
position in the previous interaction. For example, if the opponent last shot down the middle and the
ego agent moved slightly to the right to block it, then the puck ended up to the left of the ego agent
and the opponent will select the left mode next.

The ego agent controls its lateral displacement to block pucks along a horizontal axis. At every
time-step, the ego agent observes its own end-effector position and the vertical position of the puck,
and incurs a cost corresponding to the lateral distance of its end-effector to the puck. An interaction
terminates when the puck reaches the ego agent; if the ego successfully blocks the puck, it receives
a reward of +1 and otherwise 0. If the ego successfully blocks a left shot, it receives an additional
reward of +1.

D Experimental Results: Analysis of Simulation Results
D.1 Lunar Lander

In these experiments, we see near identical convergence rates for LILI (no influence) and the Oracle
agents, with both successfully learning to land on the launchpad and model the opponent’s alternat-
ing coordinates. Due to the simple dynamics of the other agent, baseline agents for SAC, SLAC,
and LILAC all performed quite similarly, either randomizing directions or consistently choosing the
same path, leading to landing rates near 50% as expected. Notably, LILAC did not perform better
than SAC or SLAC, even though this environment adheres to the assumptions of LILAC. This may
be due to optimization challenges in LILAC that are not present in our approach, i.e., regularizing
the encoder to a learned prior.

D.2 Driving (2D)

In these simulated driving interactions, LILI (no influence) converged towards an optimal solution
with near equivalent sample efficiency as the Oracle, demonstrating its effectiveness. Both SAC
and LILAC agents learned to avoid rear-end collisions with the opponent, attempting to randomize
the choice of passing lane, yielding success rates closer towards the 50% upper bound. In contrast,
the SLAC agent consistently attempted to pass from same lane, resulting in persistent failures.

12

Method Final Rewards
Ours-0.0 -0.7206 +/- 0.0061
Ours-0.2 -0.8563 +/- 0.0539
Ours-0.4 -1.039 +/- 0.0311
Ours-0.6 -1.188 +/- 0.0520
Ours-0.8 -1.726 +/- 0.1744
Ours-1.0 -1.715 +/- 0.0535

SAC -5.047 +/- 0.0190
Oracle -0.5434 +/- 0.0605

Table 2: LILI evaluated in the Point Mass
domain against agents with varying noise
levels in their strategies. We add Gaussian
noise to the other agent’s step size σ =
0.0v, 0.2v, 0.4v, 0.6v, 0.8v, 1.0v, with aver-
age step size v.

Method Final Rewards
Ours-1 -0.7206 +/- 0.0061
Ours-3 -0.8969 +/- 0.0276
Ours-5 -1.736 +/- 0.1481
Ours-7 -3.232 +/- 0.6576
Ours-9 -3.046 +/- 0.2468
Ours-11 -4.486 +/- 0.4979

SAC -5.162 +/- 0.0865
Oracle -0.5605 +/- 0.0361

Table 3: LILI evaluated in the Point Mass
domain against agents whose strategies de-
pend on the previous N interactions, for
N = 1, 3, 5, 7, 9, 11.

D.3 Driving (CARLA)

The increased complexity of the CARLA simulated environment combined with early interaction
terminations provided several stages of learning challenges for agents – avoiding lane boundary vi-
olations, rear-end collisions with the opponent vehicle, and successfully predicting opponent lane
switches. Training visualizations indicate that the Oracle agent, after successfully learning to avoid
lane boundary violations and rear-end collisions, quickly grasped the lane changing mechanisms
and converged to an optimal solution. Both SLAC and LILAC agents suffered particularly from
convergence towards repeated local minima – consistently choosing the same passing lane with only
minor steering alterations to extend the episode length, but ultimately colliding with the opponent.
Next, the SAC agent performed close to the theoretical no-information upper bound by successfully
mixing its strategy. By randomizing which lane to pass from, the SAC agent succeeded nearly 50%
of the time.) Lastly, LILI (no influence) eventually converged to an optimal solution, successfully
passing on each interaction. We note that during training, LILI (no influence) successfully learned
a pattern of alternation, but often failed to recover the correct alternating parity correctly from occa-
sional rear-end collisions, leading to extended series of failed interactions. In contrast to our other
simulated environments, LILI (no influence) converged much slower likely as a result of these early
terminating episodes increasing the difficulty in inferring the latent strategy dynamics.

E Experimental Results: More Complex Strategies
E.1 Agent Strategies with Noise

We next study the robustness of our approach by evaluating LILI against agents with noisy strate-
gies. To do so, we modify the Point Mass domain: whereas the other agent in the original task took
fixed-size steps between interactions, in this experiment, we add a Gaussian noise to the step size v,
for σ = 0.2v, 0.4v, 0.6v, 0.8v, 1.0v.

In Table 2, we report the final average rewards and standard error obtained from 3 random seeds for
each value of σ. The σ = 0.0 case corresponds to the original, noiseless Point Mass setting. While
the performance of LILI slightly degrades as the magnitude of noise increases, LILI can still model
the other agent’s strategies and significantly outperforms the SAC baseline, even under very noisy
conditions. We observe that SAC and the Oracle perform similarly across different noise levels, and
report the aggregated results across all runs.

E.2 Agent Strategies with History Dependence

To understand whether LILI can learn to model more complex strategies, we evaluate our approach
against agents whose strategies depend on a longer history of interactions. Concretely, we include
an experiment in the Point Mass domain in which the other agent’s strategy now depends on the
previous N interactions, instead of only the last interaction, for N = 3, 5, 7, 9, 11. Specifically, the

13

other agent moves counterclockwise if, in the majority of the last N interactions, the ego agent’s
final position is inside of the circle, and moves clockwise otherwise. We modify LILI so that its
encoder takes the last N trajectories as input.

We expect LILI to perform worse as N increases, because the opponent’s strategies become more
complex and harder to model. However, we would like to emphasize that we generally expect N to
be small when interacting with humans due to their bounded rationality [53], and in this work, we
follow this assumption, and are motivated by scenarios where the strategy can be inferred from a
short history of interactions.

We report the final average rewards and standard error from 3 random seeds in Table 3. The N = 1
case corresponds to the original Point Mass setting. The final performance of LILI degrades as the
history length N increases and the other agent’s latent strategies become more difficult to model.
LILI still performs better than the SAC baseline for smaller values of N , but achieves similar
rewards as the SAC baseline for N = 11. Because the SAC baseline and the Oracle do not model
the other agent’s strategies, we find that they perform similarly across different values of N > 1,
and report the aggregated results across all runs.

14

	1 Introduction
	2 Related Work
	3 Repeated Interactions with Non-Stationary Agents
	4 Learning and Influencing Latent Intent (LILI)
	4.1 Learning Latent Strategies from Local Observations
	4.2 Reinforcement Learning with Latent Strategies
	4.3 Influencing by Optimizing for Long-Term Rewards
	4.4 Implementation

	5 Experiments
	5.1 Simulated Environments and Multi-Agent Experimental Setup
	5.2 Simulation Results: Trapping the Other Agent in Point Mass
	5.3 Air Hockey Results: Learning to Play Against Robot and Human Opponents

	6 Discussion
	A Implementation Details
	B Experimental Details: Simulated Domains
	B.1 Point Mass
	B.2 Lunar Lander
	B.3 Driving (2D)
	B.4 Driving (CARLA)

	C Experimental Details: Robotic Air Hockey
	D Experimental Results: Analysis of Simulation Results
	D.1 Lunar Lander
	D.2 Driving (2D)
	D.3 Driving (CARLA)

	E Experimental Results: More Complex Strategies
	E.1 Agent Strategies with Noise
	E.2 Agent Strategies with History Dependence

