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Abstract

The field of robotics has been rapidly evolving in recent years, and robots are being used in an ever-

increasing number of applications, from manufacturing to healthcare to household chores. One of the

key challenges in robotics is enabling robots to perform complex manipulation tasks in unstructured

and dynamic environments. While there have been significant advances in robot learning and control,

many existing approaches are limited by their reliance on pre-defined motion primitives or generic

models that do not account for the specific characteristics of individual users, other cooperative

agents or the interacting objects. In order to be effective in these various settings, robots need to

be able to adapt to different tasks and environments, and to interact with different types of agents,

such as humans and other robots. This thesis investigates learning approaches for enabling robots

to adapt their behavior in order to achieve intelligent robot behavior.

In the first part of this thesis, we focus on enabling robots to better adapt to humans. We start

by exploring how to leverage different sources of data to achieve personalization for human users.

Firstly, we investigate how humans prefer to teleoperate assistive robot arms using low-dimensional

controllers, such as joysticks. We present an algorithm that can efficiently develop personalized

control for assistive robots. Here the data is obtained by initially demonstrating the behavior of

the robot and then query the user to collect their corresponding preferred teleoperation control

input from the joysticks. Subsequently, we delve into the exploration of leveraging weaker signals

to infer information from agents, such as physical corrections. Experiment results indicate that

human corrections are correlated and reasoning over these corrections together achieves improved

accuracy. Finally, instead of only adapting to a single human user, we investigate how robots

can more efficiently cooperate with and influence human teams by reasoning and exploiting the

team structure. We apply our framework to two types of group dynamics, leading-following and

predator-prey, and demonstrate that robots can first develop a group representation and utilize this

representation to successfully influence a group to achieve various goals.

In the second part of this thesis, we extend our investigation from human users to robot agents.

We tackle the problem of how decentralized robot teams can adapt to each other by observing only

the actions of other agents. We identify the problem of an infinite reasoning loop within the team

and propose a solution by assigning different roles, such as ”speaker” and ”listener,” to the robot
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agents. This approach enables us to treat observed actions as a communication channel, thereby

achieving effective collaboration within the decentralized team.

Moving on to the third part of this thesis, we explore the topic of adapting to different tasks

by developing customized tools. We emphasize the critical role of tools in determining how a robot

interacts with objects, making them important in customizing robots for specific tasks. To address

this, we present an end-to-end framework to automatically learn tool morphology for contact-rich

manipulation tasks by leveraging differentiable physics simulators.

Finally, we conclude the thesis by summarizing our efforts and discussing future directions.
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Chapter 1

Introduction

1.1 Overview

As the field of robotics has been rapidly evolving in recent years, robots are being used in an ever-

increasing number of applications, from manufacturing to healthcare to household chores. With

robots becoming more capable of performing complex tasks and interacting with humans in a variety

of scenarios, it is crucial that they can adapt to changing circumstances, whether it be a change

in the environment, the task, or the users they are interacting with. We refer robot adaptation to

the ability of robots to modify their behavior in response to changes in their environment, task or

users. This can involve adjusting their behavior according to the specific environment, changing the

way they communicate and coordinate with other agents, or reasoning over the intent of specific

human users to better meet their needs. Adaptation is essential for robots to operate effectively in

the real world, where the environment can be unpredictable, tasks can be dynamic, and users can

have varying abilities and preferences.

One of the main reasons why robot adaptation is necessary is that robots are often deployed in

situations where the task or environment is not well-defined or predictable. For example, in disaster

response scenarios, robots may need to navigate through partially collapsed buildings or hazardous

environments to locate and rescue survivors. In these situations, the robot needs to be able to adapt

its behavior to efficiently communicate and collaborate with other human rescue teams and robots,

and navigate the environment safely and effectively. Similarly, in healthcare settings, robots may

need to adapt their behavior to accommodate the needs and preferences of different patients, who

may have varying levels of physical or cognitive abilities.

However, despite the importance of robot adaptation, it is a challenging problem. First, while

significant advancements have been made in automation in recent years, the development of robots

with full autonomy remains a challenge. This limitation is due to the fact that robots lack the ability

to handle all possible scenarios and respond appropriately to unexpected events. Second, even when

1



CHAPTER 1. INTRODUCTION 2

the robot is fully capable of executing current tasks, there can be various human preferences over how

to complete them, especially in complex manipulation scenarios. Different humans might assume

different preferences, and even the same human users can change their intentions over time. Dealing

with the variations and the non-stationarity of human intentions requires the robot to have a better

understanding of humans. Finally, the range of tasks that a robot may need to perform can be

quite broad, ranging from manipulation tasks that require precise control to social interactions that

require nuanced communication and understanding of human behavior.

To this end, the goal of this dissertation is to address these challenges and develop methods for

enabling robots to adapt to changing circumstances, including robots adapting to humans, robots

adapting to robots, and robots adapting to tasks. A detailed outline of the thesis is provided in

Sec. 1.2. By addressing these different aspects of robot adaptation, we aim to develop a more com-

prehensive understanding of the challenges involved and facilitate more intelligent robot behavior.

1.2 Thesis Outline

This dissertation contains three parts. Part I describes how we leverage different sources of data

to enable robots to adapt to humans, including individual human users and human teams. Part II

further extends the adaptation from humans to robot agents and introduces how we enable decen-

tralized robot teams to learn from their partners’ actions. In Part III, we focus on adapting the

robot for specific tasks by designing customized tools. We provide more detailed descriptions of

these components as follows.

Part I: Adaptation to Humans. In this part, we first focus on achieving personalization for

individual human users to improve user experiences and execute tasks better in Chapter 2 and

Chapter 3, and further investigate how to more efficiently cooperate and influence human teams in

Chapter 4.

• In Chapter 2, we present a general framework to enable personalized control for teleoperating

assistive robots. When humans control drones, cars, and robots, we often have some pre-

conceived notion of how our inputs should make the system behave. Existing approaches to

teleoperation typically assume a one-size-fits-all approach, where the designers pre-define a

mapping between human inputs and robot actions, and every user must adapt to this mapping

over repeated interactions. Instead, we propose a personalized method for learning the hu-

man’s preferred or preconceived mapping from a few robot queries. Given a robot controller,

we identify an alignment model that transforms the human’s inputs so that the controller’s

output matches their expectations. We make this approach data-efficient by recognizing that

human mappings have strong priors: we expect the input space to be proportional, reversable,

and consistent. Incorporating these priors ensures that the robot learns an intuitive mapping

from few examples. We test our learning approach in robot manipulation tasks inspired by
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assistive settings, where each user has different personal preferences and physical capabilities

for teleoperating the robot arm. Our simulated and experimental results suggest that learning

the mapping between inputs and robot actions improves objective and subjective performance

when compared to manually defined alignments or learned alignments without intuitive priors.

The content of this chapter is based primarily on [108].

• In Chapter 3, we explore leveraging weaker signals, i.e. physical corrections to reason over

human preferred objectives. When assistive, and interactive robots make mistakes, humans

naturally and intuitively correct those mistakes through physical interaction. In simple situ-

ations, one correction is sufficient to convey what the human wants. But when humans are

working with multiple robots or the robot is performing an intricate task often the human

must make several corrections to fix the robot’s behavior. Prior research assumes each of these

physical corrections are independent events, and learns from them one-at-a-time. However,

this misses out on crucial information: each of these interactions are interconnected, and may

only make sense if viewed together. Alternatively, other work reasons over the final trajectory

produced by all of the human’s corrections. But this method must wait until the end of the

task to learn from corrections, as opposed to inferring from the corrections in an online fashion.

In this chapter, we formalize an approach for learning from sequences of physical corrections

during the current task. To do this we introduce an auxiliary reward that captures the hu-

man’s trade-off between making corrections which improve the robot’s immediate reward and

long-term performance. We evaluate the resulting algorithm in remote and in-person human-

robot experiments, and compare to both independent and final baselines. Our results indicate

that users are best able to convey their objective when the robot reasons over their sequence

of corrections. The content of this chapter is based primarily on [106].

• In Chapter 4, we shift our focus from adapting to individual humans to adapting to human

teams. In human groups, roles such as leading and following can emerge naturally. How-

ever, in human-robot teams, such roles are often predefined due to the difficulty of scalably

learning and adapting to them. In this chapter, we enable a robot to efficiently learn how

group dynamics emerge and evolve in human teams and we leverage this understanding to

plan for influencing actions for autonomous robots that guide the team toward achieving a

common goal. We first develop an effective and concise representation of group dynamics,

such as leading and following, by enforcing a graph structure while learning the weights of

the edges corresponding to one-to-one relationships between the agents. We then develop an

optimization-based robot policy that leverages this graph representation to attain an objec-

tive by influencing a human team. We apply our framework to two types of group dynamics,

leading-following and predator-prey, and show that our structured representation is scalable

with different human team sizes and also generalizable across different tasks. We also show

that robots that utilize this representation are able to successfully influence a group to achieve
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various goals compared to robots that do not have access to these graph representations. The

content of this chapter is based primarily on [107].

Part II: Adaptation to Robots. In this part, we extend from adapting to humans to adapting

to robot agents.

• In Chapter 5, we explore how decentralized robot teams can adapt to each other by only ob-

serving the other agents’ actions. Similar to Chapter 3, we rely on weak signals obtained by

observing the actions of the other agents, enabling us to reason about their intents. Commu-

nication is often necessary, when teams of robots collaborate to complete a task. Like humans,

robot teammates should implicitly communicate through their actions: but interpreting our

partner’s actions is typically difficult, since a given action may have many different underlying

reasons. Here we propose an alternate approach: instead of not being able to infer whether

an action is due to exploration, exploitation, or communication, we define separate roles for

each agent. Because each role defines a distinct reason for acting (e.g., only exploit, only

communicate), teammates now correctly interpret the meaning behind their partner’s actions.

Our results suggest that leveraging and alternating roles leads to performance comparable to

teams that explicitly exchange messages. The content of this chapter is based primarily on

[116].

Part III: Adaptation to Tasks. In this part, we delve into enabling robot adaptation for specific

tasks by designing customized tools.

• In Chapter 6, we investigate customized tool design for specific contact-rich manipulation task.

When humans perform contact-rich manipulation tasks, customized tools are often necessary

to simplify the task. For instance, we use various utensils for handling food, such as knives,

forks and spoons. Similarly, robots may benefit from specialized tools that enable them to

more easily complete a variety of tasks. We present an end-to-end framework to automatically

learn tool morphology for contact-rich manipulation tasks by leveraging differentiable physics

simulators. Previous work relied on manually constructed priors requiring detailed specification

of a 3D object model, grasp pose and task description to facilitate the search or optimization

process. Our approach only requires defining the objective with respect to task performance

and enables learning a robust morphology through randomizing variations of the task. We make

this optimization tractable by casting it as a continual learning problem. We demonstrate the

effectiveness of our method for designing new tools in several scenarios, such as winding ropes,

flipping a box and pushing peas onto a scoop in simulation. Additionally, experiments with

real robots show that the tool shapes discovered by our method help them succeed in these

scenarios. The content of this chapter is based primarily on [105].

Lastly, we summarize the contributions of this thesis and discuss promising directions for future

research in Chapter 7.
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Chapter 2

Learning User-Preferred Mappings

for Intuitive Robot Control

2.1 Introduction

Humans are extremely good at developing tools and systems. Each of us interact with these systems

everyday—from driving your car to work to playing video games at home. Unfortunately, we are

not always good at these interactions. Using a joystick to play a kart racing computer game seems

relatively easy, and we can do this without thinking much about it. But actually learning how

to drive a real-life car does require practice. Even more challenging is flying a helicopter—this is

highly demanding, and requires professional training. In these systems the human must adapt to

the robot’s controller across multiple rounds of interaction. Rather than forcing the human to adapt

to the robot, we wonder if instead the robot could intelligently adapt to our preferences, making

control more easy and intuitive?

Alongside rapid advancements in the field of robotics, intuitive control is increasingly in demand,

particularly since a wide spectrum of users are operating robots beyond just engineers [9]. User-

friendliness and comfort are crucial in many application domains including surgical and assistive

robots [10, 158], mobile robots [128] and even more abstract smart home systems [81]. At the

heart of these systems, there is seamless teleoperation. Typically—for teleoperation—there are two

main categories of control methods. One is to use control interfaces such as joysticks or sip-and-

puff devices [26, 88]. These controllers are light-weight but low-dimensional, which makes control

of robots with many degrees of freedom (DoF) challenging. To make up for this limitation when

teleoperating robot arms, [77] propose to that the controller should change modes between different

DoFs. Other work focuses on capturing high-DoF human body movement with wearable devices,

cameras, or sensors [153], and then maps them to robot actions. While these methods provide more

6
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Figure 2.1: The human has in mind a preferred mapping between their joystick inputs and the
robot’s actions. The robot learns this mapping (i.e., θ) offline from labelled data and intuitive
priors, so that the robot’s online actions are correctly aligned with the human’s intentions.

accurate measurements and natural control interfaces, they are typically larger and more expensive

systems that might not be available to everyday users.

Within this work, we are interested in the first category of teleoperation methods. We present a

human-centered, adaptive system for robotic manipulation so that human users can smoothly and

intuitively teleoperate high-DoF robots with simple, low-DoF controllers. We envision a model that

provides a general framework for learning intuitive input mappings that are agnostic to both the

controller and the dynamics of the underlying robotic system (see Fig. 2.1). Based on a general

architecture of feedforward neural networks, the presented framework can be applied to different

robots and controllers for various tasks with only a few demonstrations needed from the human

users. Our key insight is:

By incorporating the intuitive priors that humans expect, including proportionality, reversability

and consistency, we can quickly learn how humans prefer to control robots.

Our approach first asks the human user to label a set of robot actions with their preferred

inputs. For example, the robot moves towards the cup, and then asks what joystick direction should

be associated with this action. Based on a small number of these labeled state-action pairs, we

learn an alignment model that maps from human inputs to robot inputs such that the resulting

robot actions match the human’s preferences. Ensuring a small number of questions is critical for

real-world implementation: we cannot ask the human to label hundreds of examples actions! Our

insight—incorporating intuitive priors—enables the robot to generalize across the workspace, leading

to offline learning from a limited amount of labeled data.
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More precisely, we make the following contributions:

Formalizing Priors for Human Control. We formalize the properties that humans expect

to have when controlling robotic systems, including proportionality, reversability, and consistency.

These priors are inspired by [93], and we here analyse their relative importance when learning the

human’s preferred input mapping.

Generalizable Data-Efficient Learning. We build a general framework for learning human

control preferences. We develop this data-efficient method by incorporating the intuitive priors that

humans expect, so that users only need to provide a few examples of their desired mappings. Our

proposed method develops a light-weight solution that can generalize across different controllers,

dynamics, and tasks.

Evaluating Learned Human Alignment. We implement our approach both in simulation and on

robot manipulation tasks, and get subjective feedback from users. Our tasks are inspired by assisitve

robotics, where users living with physical disabilities have different capabilities and preferences.

Results in simulation as well as in user studies suggest that our algorithm successfully learned the

human-preferred alignment between the low-DoF control interface and high-DoF robot actions. In

practice, this learned alignment led to improved control and more seamless interaction.

2.2 Related Work

Intuitive Control. When controllers are intuitive, the effects of user inputs match with that user’s

expectations. Such a property is very important for robotic control, especially in human-robot

teleoperation. Many research efforts are devoted to tackle this problem [52, 68, 38]. Some use

wearable devices to capture human motion patterns [156], some leverage augmented reality and use

a gesture-based system to enable intuitive human robot teaming [67], and others rely on various

sensors to measure and understand humans’ haptic feedback [82]. These previous works require

additional devices to infer the human intent behind their actions, and then provide a universal

solution for intuitive control. Instead of directly enforcing a one-size-fits-all control strategy to

human users, we separately query each user for their individual preferences. With no additional

hardware requirements, we come up with a light-weight solution for intuitive control that could

generalize across different platforms and tasks.

Assistive Robots. Intelligent assistive robot systems (e.g., wheelchair-mounted robot arms) are

one important setting in which intuitive control is essential for widespread use [195]. Because users

are constrained by person-specific capabilities, one-size-fits-all controllers are insufficient. Moreover,

the problem of “dimensionality mismatch” arises when humans try to teleoperate these high-DoF

robots by manipulating a low-DoF controller, e.g., a 2-axis joystick. Prior works tackle this with a

mode switching mechanism [141, 185]: however, this forces users to constantly switch modes when

performing complex tasks. Other works mitigate mode-switching with model-based optimization [77]
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Figure 2.2: Visualization for the training process of the alignment model z = fθ(h, s) parametrized
by θ. Here the example task is for the robot to move in a plane, and the human would like the
robot’s end-effector motion to align with their joystick inputs (h1 and h2). We take snapshots at
three different points during training, and plot how the robot actually moves when the human presses
up, down, left, and right. Note that this alignment is state dependent. As training progresses, the
robot learns the alignment θ, and the robot’s motions are gradually and consistently pushed to
match with the human’s preferences.

or in a data-driven manner [86], but the underlying mode switching still remains discontinuous. An

alternative was recently proposed by [120], in which the robot learns a continuous mapping between

a low-DoF latent action space and the high-DoF robot action space using autoencoders. While

this approach enables continuous control of the high-DoF robot, it still fails to provide an intuitive

control mapping to the user.

In this chapter, we use assistive robot manipulation as the test domain for our framework. We

consider the teleoperation problem from the user’s perspective, and attempt to learn a mapping

between their inputs and the assistive robot’s actions which caters to the user’s preferences.

2.3 Formalism for Modeling Preference Alignment

We formulate a robot manipulation task as a discrete-time Markov Decision Process (MDP)M =

(S,A, T , R, γ, ρ0). Here S ⊆ Rn is the state space, A ⊆ Rm is the robot action space, T (s, a) is the
transition function, R is the reward, γ is the discount factor, and ρ0 is the initial distribution.

2.3.1 Problem Statement.

Assume humans control a robot using the teleoperation interface at = ϕ(zt, st), where t denotes

timestep, st ∈ S is the system state, zt ∈ Rd is the d-dimensional system input, and at ∈ A is the

action executed by the robot. We use ht ∈ Rd to denote the human’s input. For instance, when the

human is using a joystick to teleoperate the robot arm, their two-DoF joystick input corresponds to

h ∈ R2.

Traditionally, the human’s input h is directly used as the system input z, so that zt = ht, and the

robot takes action at = ϕ(ht, st). However — for complex or non-intuitive systems — it may be hard

for human users to directly interact with the controller ϕ. For instance, using a low-DoF joystick
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to control a high-DoF assistive robot can be difficult, since we do not know how to coordinate the

robot’s joints. Moreover, different users also have different preferences for controlling their robot—

which may or may not match with the system controller. Put another way, the pre-defined mapping

of the controller at = ϕ(ht, st) is often quite different from what users want!

Our goal is to make the robotic system easier to control: instead of forcing the human to adapt

to ϕ, we want the robot to adapt to the user’s preferences (without fundamentally changing the

controller). We therefore propose to learn an alignment function zt = fθ(ht, st) parameterized by

θ, which maps the human input ht ∈ Rd and the robot state st ∈ S to the controller input zt ∈ Rd.

In this way, we construct a new, two-step mapping between the action of the robotic system at and

the human’s input ht:

at = ϕ(zt, st) = ϕ(fθ(ht, st), st) (2.1)

State Conditioning. Consider the person in Fig. 2.1, who is using a 2-axis joystick to control

a high-DoF assistive robot arm to reach and pour a cup. The user’s preferred way to control the

robot is unclear: what does the user mean if they push the joystick forward? When the robot is

far from the cup, the user might intend to move the robot towards the cup—but when the robot

is holding the cup, pressing forward now indicates that the robot should rotate, and pour the cup

into a bowl! This mapping from the user input to intended action is not only person dependent,

but it is also state dependent. In practice, this state dependency prevents us from learning a single

transformation to uniformly apply across the robot’s workspace—we need an intelligent strategy for

understanding the human’s preferences in different contexts.

2.3.2 Background: Latent Action Embeddings

We will leverage the assistive robot controller proposed in [120] as the main test domain for our

alignment framework. Here a conditional autoencoder is trained from demonstrations of related

tasks, learning the control function ϕ in Eqn. (2.1). More formally, ϕ : Z ×S 7→ A is a decoder that

recovers a high-DoF robot action at ∈ A given the system input zt ∈ Z and current context st ∈ S.
Overall, ϕ is a suitable test domain for our work since it is not immediately clear what the system

inputs map to, i.e., there is no prior over how zt is aligned with at at different states. We also point

out that this controller captures the state conditioning described above. Since ϕ depends on s, the

robot’s action a changes based on the current context: the same input z moves the robot towards

the cup when the gripper is empty, and then rotates to pour when holding the cup. This enables

easy switching between tasks, like reaching and pouring.
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2.4 Approach

2.4.1 Constructing Alignment Model

Human Alignment. As described in Sec. 2.3, we seek to obtain a mapping zt = fθ(ht, st) that

converts the human input ht to the controller input zt at timestep t. Using this transformed system

input, the controller will then execute action at on the robot, as in Eqn. (2.1).

Model. We leverage a function fθ(ht, st) with parameters θ to capture this alignment. Here st —

the current state of the robot — is also passed as part of the input since the human’s alignment

could be state-dependent. In this work, we will utilize a general Multi-Layer Perceptron (MLP) to

represent fθ, where θ becomes the weights of the network.

Objective Function. Given the alignment model f , we will apply supervised learning to match

the output of this model to the true human preferences (as visualized in Fig. 2.2).

Formally, with the action at computed by Eqn. (2.1), the robot state st+1 at next timestep is

given by the transition model st+1 = T (st, at). We therefore denote the overall mapping between

the current human input ht at state st and the next state st+1 using a function T with parameters

θ:

st+1 = Tθ(ht, st) = T (st, ϕ(fθ(ht, st), st)) (2.2)

Because we are ultimately interested in how well the robot’s action at matches the human’s pref-

erence, we define our objective function as the distance d between the robot’s actual next state

st+1 and the ground truth state s∗t+1, which is where the human really intended to go1. Taking the

expectation, we get the supervised loss Lsup:

Lsup(θ) = E[d(s∗t+1, st+1)] = E[d(s∗t+1, Tθ(ht, st))] (2.3)

We leverage Euclidean Distance as our distance metric between states, although other metrics are

also possible: d(s1, s2) = ||s1−s2||2. To approximate the integral in Eqn. (2.3), we implement Monte

Carlo Sampling by stochastically picking N data points from the state distribution:

L(θ) =
1

N

N∑
i=1

d(s∗it+1, Tθ(ht, s
i
t)) (2.4)

2.4.2 Ensuring Data-Efficiency with Intuitive Priors

Recall that we are learning the human’s preferred mapping with a function approximator. In gen-

eral, training these models requires a large number of labeled data samples, particularly in com-

plex scenarios where the mapping changes in different states. However, since we need annotations

from humans to identify their intended states, it is impractical for the robot to collect a large

1We query the user for this intended state, as explained in Section 2.4.3
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labeled dataset. Accordingly—to tackle the challenge of insufficient labeled data—we employ a

semi-supervised learning method [35]. Our contribution here is to formulate the intuitive priors that

humans have over their control mappings as loss terms, which can then be leveraged within this

semi-supervised learning.

Formally, for a given robotic arm, we let s be the robot’s joint position, and we denote the forward

kinematics as Ψ. For a human control input h at state s, the next state is given by Tθ(h, s) as in

Eqn. (2.2). The corresponding end-effector pose change is ∆x(s) = Ψ(Tθ(h, s))−Ψ(s). With these

definitions in mind, we argue an intuitive control mechanism should satisfy the following properties:

1. Proportionality – The amount of change in the 3D pose of the robot’s end effector should be

proportional to the scale of the human input, i.e.,

α · |Ψ(Tθ(h, s))−Ψ(s)| = |Ψ(Tθ(α · h, s))−Ψ(s)|

where α ∈ R is the scaling factor. Proportionality is quite common and intuitive in system

design: it indicates that humans expect the system to be linearly interpolatable. We define the

proportionality loss Lprop as:

Lprop =
[
Ψ(Tθ(α · h, s))− (Ψ(s) + α∆x(s))

]2
where α is independently sampled from a uniform distribution α ∼ U(−1, 1), since the control

input is bounded.

2. Reversability – If an action h makes the robot transit from state s1 to s2, the opposite action,

denoted by the negation of h, i.e., −h, should be able to make the robot transit from s2 back to

s1.

s2 = Tθ(h, s1)→ s1 = Tθ(−h, s2)

This property ensures recoverability when users mistakenly operate the system, so that people

can undo their mistakes and return to the original state. We define the reversability loss as:

Lreverse =
[
Ψ(s)−Ψ(Tθ(−h, Tθ(h, s)))

]2
where Ψ(s) is the current 3D pose of the robot end effector, while Ψ(Tθ(−h, Tθ(h, s))) is the 3D

pose of the end effector after executing human input h followed by executing the opposite input

−h.

3. Consistency – The same action taken at nearby states should lead to similar amounts of change
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in the 3D pose of the robot’s end effector, i.e.,

∆x1 = |Ψ(Tθ(h, s1))−Ψ(s1)|

∆x2 = |Ψ(Tθ(h, s2))−Ψ(s2)|

∀ϵ > 0,∃δ > 0, s.t.|s1 − s2| < δ → |∆x1 −∆x2| < ϵ.

Consistency encourages the control to be smooth, so that the mapping does not discontinuously

change alignment. We define the consistency loss as:

Lcon = exp (−γ||s1 − s2||) · (∆x(s1)−∆x(s2))
2

We use the weight term exp (−γ||s1 − s2||) to gauge the similarity between states s1 and s2,

where γ > 0 is a hyperparameter controlling the temperature. A large weight is assigned to the

state pair (s1, s2) if the difference between them is small.

During the training process, we minimize the supervised loss for labeled data combined with the

semi-supervised loss for unlabeled data using intuitive priors:

L = Lsup + λ1Lprop + λ2Lreverse + λ3Lcon (2.5)

Here Lsup is supervised loss term as shown in Eq. (2.3), and λ1, λ2, λ3 are constant coefficients.

Importantly, incorporating these different loss terms — which are inspired by human priors over

controllable spaces [93] — enables the robot to generalize the labeled human data (which it performs

supervised learning on) to unlabeled states (which it can now perform semi-supervised learning on)!

2.4.3 Data Collection by Querying Users

To enable the training of our algorithm, we need to collect labeled data tuples (st, ht, s
∗
t+1) as well

as unlabeled data tuples (st, s
∗
t+1), where st is the robot’s current state, ht is the human’s low-

dimensional input, and s∗t+1 is the intended next robot state corresponding to ht. We emphasize

that the robot never needs to detect the human’s intended state — rather, the human labels robot

actions with their preferred inputs. Our data collection procedure is as follows:

• Step 0: Implement the controller a = ϕ(s, z). This step is optional depending on the type

of the controller; we want to emphasize that the controller will remain fixed, and will not be

altered by our alignment model.

• Step 1: For the task of interest, we sample a valid state st from the state distribution and

randomly sample a valid controller input zt at state st.
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• Step 2: At the sampled state st, we apply system input zt to the controller ϕ in order to get

the robot action at = ϕ(st, zt).

• Step 3: We record the subsequent robot state st+1 after executing the action at at the state

st.

• Step 4: Steps 1, 2, 3 are repeated for N iterations to get the unlabeled dataset {(sit, s∗it+1)
N
i=1},

consisting of N unlabeled (state, next-state) tuples.

• Step 5: We randomly sample (st, s
∗
t+1) from the unlabeled dataset collected in Step 4, and

then we query the humans for the corresponding labels ht. Here the user provides examples

to the robot of what controls they would find intuitive to move from st to s∗t+1.

• Step 6: Step 5 is repeated for K iterations to get the labeled dataset {(sit, hi
t, s

∗i
t+1)

K
i=1},

consisting of K < N labeled samples.

For supervised learning approaches, typically K needs to be fairly large so that the state space

is well covered. Here we learn the model with only a small number of labeled samples, and then

generalize to other unlabeled states by exploiting intuitive control properties. However, we do point

out that the number of queries needed could vary according to the task complexity. In addition,

for query selection, more intelligent methods such as active learning could be integrated to further

improve training. Within this work, we will employ a simple strategy of passively sampling from

the state distribution. Even with this simple approach, we are able to learn the user’s preferred

mappings from a limited number of queries in both our simulations and the robot manipulation

tasks, as we will show in the following sections.

2.5 Experiments

2.5.1 Simulation Experiments

To test our proposed alignment algorithm, we conducted simulations on a Franka Emika Panda

robot arm for three manipulation tasks of increasing complexity. We will first discuss the details

that are consistent across all experiments, and then elaborate on each task respectively.

Setup. We used a simulated Panda robot arm. The state s ∈ S denotes the robot’s joint

position, and the action a ∈ A refers to the robot’s joint velocity. The system transition function

is s′ = s + a · dt, where dt is the step size. We trained a conditional autoencoder [120] for each

task by collecting trajectory demonstrations on the simulated robot. The learned decoder maps the

low-dimensional system input z ∈ R2 to the high-dimensional robot action a ∈ R7 — this decoder is

used as the controller ϕ in our experiments. The alignment model z = fθ(h, s) aims to identify the

correspondence between control inputs z and human inputs h at each state s. Applying a simulated
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Figure 2.3: Quantitative results from the simulation experiments. We tested three different tasks
with increasing complexity, and here we display the results of the easiest (Plane) and the hardest
(Reach + Pour). Alignment Error refers to a weighted sum of the relative positional and rotational
error in end-effector space. To explore the robustness of our method, we additionally varied how noisy
the human was when providing labels. Across different tasks and levels of human noise, including all
priors consistently outperformed the other methods, and almost matched an ideal alignment learned
from abundant data.

virtual human Hsim that is separately defined for each task, we generated data for training and

testing using the procedure described in Section 2.4.3.

Tasks. We considered three tasks with increasing levels of complexity; these tasks roughly corre-

spond to our user study tasks shown in Fig. 2.4. Across all tasks the simulated user was given a

2-DoF joystick, such that h ∈ R2.

1. Plane: The simulated robot arm moves its end-effector in a 2-dimensional horizontal plane. In

this task, the simulated human’s preference is to use one dimension of the joystick for controlling

the movement along the x axis and the other dimension for controlling the movement along the

y axis (also see Fig. 2.2).

2. Pour : The simulated robot arm moves and rotates its end-effector along the vertical axis. Here

the simulated human’s preference is to use one dimension of the joystick for controlling the

position and to use the other dimension for controlling the rotation of the end-effector.

3. Reach & Pour : The simulated robot arm reaches for a bottle and then lifts and rotates the bottle

to pour it into a bowl. In this task, the simulated human’s preference is divided into two parts,

and is based on the previous tasks. For reaching the bottle in the 2D plane, the preference is

defined as in the task Plane. For pouring, the preference for joystick control is the same as in

the task Pour.

Data Efficiency. The simulated human provides 10 labeled data samples {(sit, hi
t, s

∗i
t+1)

10
i=1}, and

the robot collects 1000 unlabeled data samples {(sjt , s
∗j
t+1)

1000
j=1 } for the tasks Plane and Pour. For

the sequential task Reach & Pour, we have 20 labeled samples and 2000 unlabeled samples.

Model Details. The teleoperation controller in our experiments follows the structure in [120],

and the human alignment model is constructed as in Section 2.4.1. Our human alignment model

is a Multi-Layer Perceptron (MLP) network with 2 hidden layers. For supervised training, the loss
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function we adopt is given by L = Ltrans+λLrot. Let Ltrans be the L2 loss between predicted position

and ground truth position, and let Lrot be the L2 loss defined on the quaternion representation

between predicted and actual rotation. In the Plane task, λ = 0 because rotation is involved: but

for the other two tasks, λ = 1. During semi-supervised training, the loss function is a combination

of supervised loss terms and semi-supervised loss terms as described in Eq. (2.5).

Independent Variables. Within each simulated task, we varied (a) the type of alignment model

and (b) the noise level of the simulated human oracle Hsim. We compared against two baselines

that did not learn an alignment: no align, where z = h, and manual align, where we applied an

affine transformation that best matched the data across all states. To understand which priors are

useful, we also performed an ablation study where the robot learned the mapping with one prior at

a time. Finally, we included a no prior baseline, which only leveraged supervised training. To test

the model robustness to noisy human labels—where the human incorrectly matches h to a—we set

the coefficient of variance σ
µ ∈ {0, 0.1, 0.5} for the simulated human.

Dependent Measures. In both our approach and baselines, we measured position and rotation

errors. For positions, we computed the relative distance error Ed =
∥x∗

t+1−xt+1∥
∥x∗

t+1−xt∥ , where xt is the

current end-effector position before movement, x∗
t+1 = Ψ(s∗t+1) is the desired end-effector position

corresponding to intended next state s∗t+1, and xt+1 is the actual end-effector position the robot

reaches after executing action at = ϕ(st, fθ(ht, st)). We also measured the distance between rotations

Er = 2arccos(|⟨qt+1, q
∗
t+1⟩|), where qt+1 and q∗t+1 are the quaternion representation of the predicted

and ground truth orientation, respectively. For each experiment setting, we reported mean and

standard deviation of the performance metrics over 10 total runs.

Hypotheses. We have the following three hypotheses:

H 1. With abundant labeled data, the alignment model will accurately learn the human’s preferences.

H 2. Compared to the fully-supervised baseline, our semi-supervised alignment models that leverage

intuitive priors will achieve similar performance with far less human data.

H 3. Semi-supervised training with proportional, reversible, and consistent priors will outperform

alignment models trained with only one of these priors.

Results & Analysis. The simulations demonstrate that our alignment method successfully learned

the human’s preference with a limited amount of labeled data. As shown in Fig. 2.3, each of the

proposed alignment models significantly outperformed the one-size-fits-all baselines. For models

that do not leverage data or learning — i.e., no align and manual align — the error is significantly

higher than learning alternatives. With abundant data and noise-free human annotations, ideal align

provided the best-case performance: indicating that our parametrization of the alignment model is

capable of capturing the human’s control preferences.

Of course, in practice the amount of human feedback is limited. We therefore focus on models

that learned from only a small number of labeled datapoints (10− 20 examples). Here our proposed
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Figure 2.4: Example end-effector trajectories for the Avoid, Pour and Reach + Pour tasks during our
user studies. Participants teleoperated the 7-DoF Panda robot arm without any alignment model
(no align), with an alignment model trained only on their supervised feedback (no priors), and
with our proposed method, where the robot generalizes the human’s feedback using intuitive priors
(all priors). For both baselines, we can see examples of the human getting confused, counteracting
themselves, or failing to complete the task.

priors were critical: semi-supervised models that included at least one intuitive prior performed

twice as well as no priors, the supervised baseline.

Across different noise levels, our model that leverages all priors consistently demonstrated the

lowest mean error and standard deviation. This was particularly noticeable when the human oracle

is noisy, suggesting that the three priors are indeed complementary, and including each of them

together brings a performance boost!

Comparing the easier Plane task to the more complex Reach & Pour task, we also saw that using

priors became more important as the task got harder. This suggests that — in complex scenarios

— simply relying on a few labeled examples may lead to severe overfitting. On the other hand, our

intuitive priors could effectively mitigate this problem.

Summary. Viewed together, the results of our simulations strongly support the hypotheses H1,

H2, and H3. Our proposed alignment model successfully learned the mapping between human

actions and the system input space (H1). In settings with limited labels, our proposed alignment

model with intuitive control priors reached results that almost match supervised training with abun-

dant data (H2). Finally, in ablation studies, we showed how combining all three proposed priors

leads to superior performance and greater training stability than training with a single prior (H3).

2.5.2 User Studies

Within this section we show the results of a user study that evaluates our framework across three

robot manipulation tasks based on assistive settings. Participants teleoperated a 7-DoF robotic arm

(Panda, Franka Emika) through a handheld 2-axis joystick controller. As in our simulations, we

use [120] to learn a decoder that enables low-DoF control over the high-DoF robot arm. The robot

learned the user’s individual preferences for how this controller should behave by asking for a limited

number of examples and then generalizing with our intuitive priors.
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Tasks. Similar to our simulation experiments, we considered three different tasks. These tasks are

visualized in Fig. 2.4.

1. Avoid : The Panda robot arm moves its end-effector within a 2-dimensional horizontal plane.

Users are asked to guide the robot around an obstacle without colliding with it. The task ended

once users completed one clockwise rotation followed by one counter-clockwise rotation.

2. Pour : The Panda robot arm is holding a cup, and users want to pour this cup into two bowls.

Users are asked to first pour into the farther bowl, before moving the cup back to the start and

pouring into the closer bowl.

3. Reach & Pour : This is the most complex task. Users start by guiding the robot towards a cup

and then pick it up. Once the users reach and grasp the cup, they are asked to take the cup to

a target bowl, and finally pour into it.

Independent and Dependent Variables. For each of the task described above, we compared

three different alignment models: making no adjustments to the original controller (no align), an

alignment model trained just using the human’s labeled data (no priors), and an alignment model

trained using our proposed semi-supervised approach (all priors). Our semi-supervised learning

model should generalize the human’s preferences by enforcing intuitive priors such as proportionality,

reversibility, and consistency.

To evaluate the effectiveness of these different alignment strategies, we recorded quantitative

measures including task completion time and trajectory length. We also calculated the percentage

of the time that users undo their actions by significantly changing the joystick direction — undo-

ing suggests that the alignment is not quite right, and the human is still adapting to the robot’s

control strategy. Besides these objective measures, we also collected subjective feedback from the

participants through 7-point Likert scale surveys.

Hypothesis. An alignment model learned from user-specific feedback and generalized through

intuitive priors makes it easier for humans to control the robot and perform assistive manipulation

tasks.

Experimental Procedures. We recruited 10 volunteers that provided informed written consent

(3 female, ages 23.7± 1.5). Participants used a 2-axis joystick to teleoperate the 7-DoF robot arm,

and completed three manipulation tasks inspired by assistive settings. At the start of each task,

we showed the user a set of robot movements and ask them to provide their preferred input on the

joystick — i.e., “if you wanted the robot to perform the movement you just saw, what joystick input

would you provide?” Users answered 7 queries for task Avoid, 10 queries for task Pour and 30 queries

for task Reach & Pour. After the queries finished, the users started performing tasks sequentially

using each of the alignment strategies. The order of alignment strategies was counterbalanced.
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Figure 2.5: Heatmaps of the participants’ joystick inputs during task Avoid. For no align in the
upper right, people primarily used the cardinal directions. For no priors in the bottom left, the
joystick inputs were not clearly separated, and no clear pattern was established. For our all priors
model on the bottom right, however, we observed that the human inputs were evenly distributed.
This indicates that the users smoothly completed the task by continuously manipulating the joystick
in the range [−1,+1] along both axes.

Results & Analysis. The objective results of our user study are summarized in Fig. 2.6. Across

tasks and metrics, our model with all priors outperforms the two baselines. In addition, our model

not only has the best average performance, but it also demonstrates the least variance. Similar to

our results in simulation, when the task is difficult (i.e., Reach & Pour), the performance of the

align model trained with only supervised loss and no priors drops significantly compared to simpler

tasks, reinforcing the importance of priors in learning complex alignment models!

We also illustrate our survey responses in Fig. 2.7. Across the board, we found that users

exhibited a clear preference for our proposed method. Specifically, they perceived all priors as

resulting in better alignment, more natural, accurate, and effortless control, and would elect to

use it again. These subjective results highlight the importance of personalization when controlling

high-DoF systems — we contrast these results to [120], where participants perceived the unaligned

controller as confusing and unintuitive.

To better visualize the user experiences, we also display example robot end-effector trajectories

from one of the participants in Fig. 2.4. Here we observe that the trajectories of our model (in

orange) are smooth and do not detour during the tasks, while the trajectories for no align (in grey)

and no priors (in blue) have many movements that counteract themselves, indicating that this user

was struggling to understand and align with the control strategy. In the worst case, participants

were unable to complete the task with the no priors model (see the Avoid task in Fig. 2.4) because

no joystick inputs mapped to their intended direction, effectively causing them to get stuck at
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Figure 2.6: Objective results from our user study. Left: Average time taken to complete each
task. Middle: Average trajectory length as measured in end-effector space. Right: Percentage
of the time people spend undoing their actions. Error bars show the standard deviation across
the 10 participants, and colors match Fig. 2.4. Asterisks denote statistically significant pairwise
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7

0

1

2

3

4

5

6

U
se

r 
R

at
in

g

aligned controllable natural accurate effortless use again

Figure 2.7: Results from our 7-point Likert-scale survey. Higher ratings indicate agreement. Users
thought that our learned model with intuitive priors aligned with their preferences, was easy to
control, and improved efficiency — plus they would choose to use it again! Pairwise comparisons
between our approach and the baselines are statistically significant across the board.

undesirable states.

To further validate that our model is learning the human’s preferences, we illustrate heatmaps

over user inputs for the Avoid task in Fig. 2.5. Recall that this task requires moving the robot around

an obstacle. Without the correct alignment, users default to the four cardinal directions (no align),

or warped circle-like motions (no priors). By contrast, under all priors the users smoothly moved

the joystick around an even distribution, taking full advantage of the joystick’s [−1,+1] workspace

along both axes.

Summary. Taken together, these objective measurements as well as subjective results empirically

support our hypothesis. Using the alignment model learned with our intuitive priors, users are

able to complete the manipulation tasks more efficiently, and in a way that matches their personal

preferences.

2.6 Conclusion and Discussion

Summary. We developed a framework for learning personalized mappings between human inputs

and robot actions. Since no two humans are the same, we doubt that any one-size-fits-all approach
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will work well with everyday users. But asking humans about their preferences — and getting

their feedback in every situation — is prohibitively time consuming. We therefore proposed a

semi-supervised approach, where the robot has access to a few examples of the human’s desired

mapping, and must generalize that mapping across unlabeled data. We achieve this generalization

by recognizing that humans have strong priors over how controllers should operate: we expect

the input space to be proportional, reversible, and consistent. By incorporating these priors, our

proposed approach learned the human’s preferences from a few queries. Importantly, this proposed

method does not affect the system controller itself, is lightweight and agnostic to the underlying

robot dynamics, and does not require any additional hardware or software for intent recognition.

Limitations and Future Work. The robot currently queries the human at random states. Future

work will incorporate active learning, so that the robot intelligently selects informative states to ask

for human preferences.



Chapter 3

Learning Human Objectives from

Sequences of Physical Corrections

3.1 Introduction

Imagine that you just got back from the store, and a two-armed personal robot is helping you unpack

a bag of groceries (see Fig. 3.1). You don’t want this robot to bump the bag into any cabinets or the

hat on the left, but you also don’t want the robot to stretch and rip the bag, or squeeze it and crush

your groceries. Out of the corner of your eye, you notice that the robot is heading towards a side of

the table that is wet (the blue region in the figure). So you physically correct it — pushing, pulling,

or twisting the robot’s arms to guide it away from that region and move it toward the green region

on the left. Importantly, you can only physically interact with one arm at a time, since it’s difficult

to pay attention to how to correct both arms simultaneously: in the process of guiding this arm

away from the obstacle, you might inadvertently move both arms closer together, squeezing the bag.

Teaching this robot about all your preferences requires more than just one physical correction. You

must provide a sequence: alternating between fixing the position of the arm closest to the obstacle,

and adjusting the other arm so that the bag is held correctly.

State-of-the-art methods learn from physical corrections by treating each interaction as an inde-

pendent event [16, 15, 118, 27]. These works assume that the human makes corrections based only

on their objective, without considering the other corrections they have already made or are planning

to provide. But if we view human corrections as isolated events, we can misinterpret what they

convey: for instance, when the human moves one arm away from the hat and closer to the other

arm, this robot will mistakenly learn that the human wants to squeeze the bag.

At the other end of the spectrum, robots can learn by looking at the final trajectory collectively

produced by all of the human’s corrections [4, 11, 144, 152, 85]. There are two issues with this: i)

22
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Figure 3.1: Learning from physical sequences. Two robot arms are carrying a grocery bag toward
an undesirable wet region, blue region on the right. The human provides a sequence of physical
corrections to guide the robot toward their preferred objective, i.e., placing the bag on the green
region while also avoiding the obstacles on the left, and holding the bag upright without squeezing
or stretching it.

the robot does not learn or update its behavior until after the entire task is over, and ii) even the

final trajectory may not capture what the human really wants. Returning to our example: because

the user can only interact with one arm at a time, the final trajectory has some parts where the

distance to the obstacle is right, and other sections where the bag is held correctly — but the final

trajectory fails to capture both throughout.

At their core, prior works miss out on part of the process that humans use to correct the robot’s

behavior. Not everything can be fixed at once, or even fixed perfectly:

Humans corrections are not independent events — we often use multiple correlated interactions to

correct the robot.

We leverage this insight to learn the human’s reward function online from sequences of physical

corrections, without assuming that human corrections are conditionally independent. Let’s jump

back to our example: a robot that reasons over the sequence recognizes that collectively the human

corrections keep the robot away from the obstacle while holding the bag, even though the corrections

individually fail to convey this objective, and can even be counter-productive.

Overall, we make the following contributions:

Capturing Conditional Dependence. We enable robots to learn from sequences of corrections

by introducing an auxiliary reward function. This reward captures the human’s trade-off between

making corrections that increase the short-term reward (i.e., avoiding the obstacle) and reaching

their long-term objective (i.e., carrying groceries).
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Learning from Sequences. We introduce a tractable method to learn from a sequence of physical

corrections by i) using the Laplace approximation to estimate the partition function and ii) solving

a mixed-integer optimization problem.

Conducting Online and In-Person User Studies. Participants interacted with robots in both

single- and multi-agent environments. We recorded user’s corrections, and compared our approach

to both independent and final baselines. Our proposed method outperforms both baselines, demon-

strating the effectiveness of reasoning over sequences.

3.2 Related Work

Physical Human-Robot Interaction. When humans and robots share a workspace, physical

interaction is inevitable. Prior work studies how robots can safely respond to physical interactions

[72, 43, 83]. This includes impedance control [78] and other reactive strategies [71]. Most relevant

to our setting is shared control [110, 117, 2, 130], where the human and robot arbitrate between

leader and follower roles. Although shared control enables the user to temporarily correct the robot’s

motion, it does not alter the robot’s long term behavior: the robot does not learn from physical

corrections.

Learning from Corrections (Online). Recent research recognizes that physical human correc-

tions are often intentional, and therefore informative [16, 15, 118, 27]. These works learn about

the human’s underlying objective in real-time by comparing the current correction to the robot’s

previous behavior. Importantly, each correction is treated as an independent event. Outside of phys-

ical human-robot interaction, shared autonomy follows a similar learning scheme — the robot uses

human inputs to update its understanding of the human’s goal online, but does not reason about

the connections between multiple interactions [88, 51, 87, 89]. We build upon these prior works by

learning from sequences of corrections.

Learning from Corrections (Offline). By contrast, other works learn from the final trajectory

produced after all the corrections are complete. This research is closely related to learning from

demonstrations [11]. For example, in [4] the human corrects keyframes along the robot’s trajectory,

so that the next time the robot encounters the same task it moves through the corrected keyframes.

Most similar to our setting are [85] and [152], where the robot iteratively updates its understanding

of the human’s objective after the human corrects the robot’s entire trajectory. Although these

works take multiple corrections into account, they do so offline, and are not helpful during the

current task.
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3.3 Formalizing Sequences of Physical Corrections

In this section we formalize a physical human-robot interaction setting where one or more robots

are performing a task incorrectly. The human expert knows how these robots should behave, and

physically corrects the robots to convey the true objective. But the human doesn’t interact just

once: the human may need to interact multiple times in order to correct the robots. Our goal is for

these robots to learn the human’s objective from this sequence of physical corrections.

3.3.1 Task Formulation

We formulate our problem as a discrete-time Markov Decision Process (MDP)M = (S,A, T , r, γ, ρ0).
Here S ⊆ Rn is the robot state space, A ⊆ Rm is the robot action space, T (s, a) is the transition

probability function, r is the reward, γ is the discount factor, and ρ0 is the initial distribution.

Reward. Let the robot start from a state s0 at time t = 0. As the robot completes the task it

follows a trajectory of states: ξ = {s0, s1, . . . , sT } ∈ Ξ. The human has in mind a trajectory that

they prefer for the robot to follow. Recall our motivating example — here the human wants the

robot arms to follow a trajectory that avoids the cabinets without squashing the bag. Similar to

prior work [200, 1, 144, 90], we capture this objective through our reward function: R(ξ; θ) = θ ·Φ(ξ).
Here Φ denotes the feature counts over trajectory ξ, and θ captures how important each feature is to

the human. We let ξtR denote the robot’s trajectory at timestep t, and we let θt denote the robot’s

current reward weights.

Suboptimal Initial Trajectory. The system of one or more robots starts off with an initial reward

function R(ξ; θ0), and optimizes this reward function to produce its initial trajectory.

ξ0R = argmin
ξ∈Ξ

θ0 · Φ(ξ)

But this initial trajectory ξ0R misses out on what the human really wants — going back to our

example, the robot does not realize that the blue region is wet and it needs to place the bag on the

green region. More formally, the robot’s estimated reward function (which is parameterized by θ0)

does not match the human’s preferred reward function (parameterized by the true weights θ∗).

Human Corrections. The robot learns about the human’s reward — i.e., the true reward weights

— from physical corrections. Intuitively, these corrections are applied forces and torques which push,

twist, and guide the robots. To formulate these interactions we must revise our problem definition:

let aR be the robot’s action and let aH be the human’s correction. In practice, both aR and aH

could be applied joint torques [16, 15]. Now the overall system transitions based on both human and

robot actions: st+1 = T (st, aR + aH). We use AH = {(ti, aiH), i = 1, . . . ,K} to denote a sequence

of K ordered human corrections aiH at time step ti, where i keeps track of order of the corrections.

Our goal is to learn the human’s true reward weights from the sequence of corrections AH .
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3.3.2 Physical Corrections as Observations

When robots are performing a task suboptimally, the human expert intervenes to correct those

robots towards the right behavior. Going back to our example from Fig. 3.1. The user sees that the

robot is making a mistake (moving towards the wet blue region), and physically intervenes. In the

process of fixing this first issue, the human is forced to create another problem: by moving the first

robot arm away from the blue region, they also move both arms closer together, and start to squash

the bag. We note two important characteristics of these corrections: i) each human correction is

intentional, and conveys information about the human’s objective, but ii) the corrections viewed

together may provide more information than isolating each interaction.

Leveraging these corrections, our goal is to find a better estimate of the reward parameters

P (θ | AH , ξ0R). We start by applying Bayes’ rule:

P (θ | AH , ξ0R) ∝ P (θ)P (AH | ξ0R, θ) (3.1)

In line with prior work [16, 15, 118, 27], we will model P (AH |ξ0R, θ) by mapping each human correc-

tion to a preferred trajectory. Given the human’s correction (ti, a
i
H), we deform the robot’s trajectory

to reach ξiH .

One simple example of this is to let the robot execute atiR + atiH at this time step ti, and stick to

its original action plan atR for future time steps t > ti. More generally, we propagate the human’s

applied correction along the robot’s current trajectory [119]:

ξ1H = ξ0R + µA−1a1H

ξiH = ξi−1
H + µA−1aiH , i ∈ {2, . . . ,K}

(3.2)

Consistent with [119] and [49], µ and A are hyperparameters that determine the deformation shape

and size. We emphasize that here the robot is not yet learning — instead, it is locally modifying

its trajectory in the direction of the applied correction. Within our motivating example, let the

human apply a force pushing the first robot arm away from the blue region. Equation (3.2) maps

this correction to ξH , a trajectory that moves the robot arm farther from the blue region than ξR.

In Fig. 3.2, we demonstrate how a sequence of corrections lead to a sequence of trajectories that

enable the robot to correct its path and reach the preferred goals.

Now that we have this tool for mapping corrections to preferred trajectories, we can rewrite

Equation (3.1):

P (θ | AH , ξ0R) ∝ P (θ)P (AH | ξ0R, θ)

= P (θ)P
(
(t1, a

1
H), . . . , (tK , aKH) | ξ0R, θ

)
≈ P (θ)P (ξ1H , . . . , ξKH | ξ0R, θ)

(3.3)
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Figure 3.2: An example of a sequence of human corrections along with her corresponding correction
trajectories ξ1H , ξ2H , ξ3H , ξ4H to guide the robot to place the grocery bag on the green region while
avoiding any stretching or squeezing of the bag.

Here P (θ) is the robot’s prior over the human’s objective, and P (ξ1H , . . . , ξKH | ξ0R, θ) is the likelihood
that the human provides a specific sequence of preferred trajectories given the robot’s initial behavior

ξ0R and the reward weights θ.

3.4 Learning from Sequences of Physical Corrections

In the previous section we outlined how robots can learn from physical corrections using Equa-

tion (3.3). However, we still do not know how to evaluate P (ξ1H , . . . , ξKH | ξ0R, θ), which captures

the relationship between a sequence of human corrections and the human’s underlying objective.

Prior work [16, 15, 118, 27] has avoided this problem by assuming that the human’s corrections are

conditionally independent :

P (ξ1H , . . . , ξKH | ξ0R, θ) =
K∏
t=1

P (ξtH | ξtR, θ) (3.4)

Intuitively, this assumption means that there is no relationship between the human’s previous cor-

rections and their current correction. But we know this is not always the case — think about our

motivating example, where the human’s corrections are intricately coupled! Accordingly, here we

propose a method for evaluating P (ξ1H , . . . , ξKH | ξ0R, θ) without assuming conditional independence.

3.4.1 Reasoning over Sequences of Physical Corrections

To learn from sequences of human corrections online, we introduce an auxiliary reward function. In

this section we also describe the modeling assumptions made by this auxiliary reward function, as

well as an algorithm for leveraging this function for real-time inference.

Accumulated Evidence. We start by introducing the auxiliary reward function: D(ξ1H , . . . , ξKH , θ).

Let’s refer to D as the accumulated evidence of a sequence of preferred trajectories ξ1H , . . . , ξKH under

reward parameter θ. We hypothesize that the accumulated evidence should (a) reward not only the
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behavior of the final trajectory after all corrections, but also the intermediate trajectories the robot

follows during the sequence of corrections. This recognizes that — when users make corrections —

they don’t sacrifice long-term reward for short-term failure. Consider our motivating example: the

human is not willing to correct the robot into crushing the bag, even if that will reduce the overall

number of corrections needed to avoid the obstacle. Of course, (b) humans also try to minimize

their overall effort when making corrections — and any rewards for which the human’s corrections

are redundant or unnecessary are therefore not likely to be the human’s true reward. Combining

these two terms:

D
(
ξ1H , . . . , ξkH , θ

)
=

K∑
t=1

αK−tR(ξtH , θ)− γ
( K∑

t=1

∥atH∥2
)

(3.5)

α and γ are two hyperparameters decaying the importance of previous corrections, and determining

the relative trade-off between intermediate reward and human effort respectively.

Learning Rule. Similar to prior work in inverse reinforcement learning [200, 151, 144, 90], we

model humans as noisily rational agents whose corrections maximize accumulated evidence for their

preferred θ:

P (ξ1H , . . . , ξKH | ξ0R, θ) ∝ exp
(
D
(
ξ1H , . . . , ξkH , θ

))
(3.6)

Equation (3.6) expresses our likelihood function for learning from human corrections. Using Laplace’s

method (as applied in [51]), we can approximate the normalization factor:

P (ξ1H , . . . , ξKH | θ) =
exp

(
D
(
ξ1H , . . . , ξkH , θ

))
∫
ξ1H ,...,ξKH

exp
(
D
(
ξ1H , . . . , ξkH , θ

))
dξ1H . . . dξKH

≈
exp

(
D
(
ξ1H , . . . , ξkH , θ

))
exp

(
maxξ1H ,...,ξKH

D
(
ξ1H , . . . , ξkH , θ

)) .
(3.7)

Monte-Carlo Mixed-Integer Optimization. Inspecting the denominator of Equation (3.7),

we see that — in order to evaluate the likelihood of a sequence of corrections — we need to find the

highest possible accumulated evidence the human could have achieved given that their objective is θ.

Put another way, we need to search for the sequence of K corrections that maximize Equation (3.5)

under θ:

D∗
K(θ) = max

ξ1H ,...,ξKH

D
(
ξ1H , . . . , ξkH , θ

)
= max

(t1,a1
H),...,(tK ,aK

H )
D
(
ξ1H , . . . , ξkH , θ

) (3.8)

Unfortunately, solving Equation (3.8) is hard because we need to figure out both when to make each

correction (t1, . . . , tK), which is a discrete decision, as well as what to correct during each interaction
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Algorithm 1: Monte-Carlo Mixed-Integer Program

Output: Maximum accumulated evidence D∗
K(θ), and K optimized human corrections

(t1, a
1
H), . . . , (tK , aKH)

Input: The suboptimal initial robot plan ξ0R, reward parameter θ, and hyperparmeters in
Eqn. (3.5).
G(t1, . . . , tK) is a continuous optimizer.

1 Initialize maximum accumulated evidence and correction times: D∗
K = −∞, T = ∅.

2 for i← 0 to Tmax do
3 while (t1, . . . , tK) ∈ T do
4 Randomly sample (t1, . . . , tK)
5 end
6 T = T ∪ {(t1, . . . , tK)}
7 Di , (a1, . . . , aK) = G(t1, . . . , tK , ξ0R, θ)
8 if Di > D∗

K then
9 D∗

K = Di

10 T ∗
H = (t1, . . . , tK)

11 A∗
H = (a1, . . . , aK)

12 end

13 end
14 return D∗

K , T ∗
H , A∗

H

(a1H , . . . , aKH), which is a continuous action.

To tackle this mixed-integer optimization problem, we develop a Monte-Carlo mixed-integer opti-

mization method, where we first randomly sample discrete (t1, . . . , tK), and then solve (a1H , . . . , aKH)

with gradient-based continuous optimization methods. The full pipeline for the optimization is

summarized in Algorithm 1.

Importantly, the inputs to this optimization are only the robot’s initial trajectory ξ0R, the reward

parameter θ, and our model hyperparameters. Hence, we can conduct offline optimization to solve

Equation (3.8) for several sampled values of θ. We then use the resulting library of stored D∗ values

to learn online, during physical interaction.

Online Inference. We have a way for solving for the denominator in Equation (3.7) offline. What

remains to be evaluated is the numerator exp
(
D
(
ξ1H , . . . , ξkH , θ

))
. This can be easily computed

online when the human is physically correcting the robot. Thus, we can now evaluate P (ξ1H , . . . , ξKH |
ξ0R, θ) while accounting for the relationships between corrections.

Our overall pipeline is as follows. Offline, we compute D∗
K(θ) with Alg. 1. Online, the robot

starts by following the optimal trajectory ξ0R with respect to its prior over θ. However, this initial

reward might not capture the human reward and thus the human physically corrects the robot. The

robot would then perform inference and update its belief over the reward when it receives new human

corrections. At time t, the human has provided a total of K corrections (t1, a
1
H), . . . , (tK , aKH), where

t1 < t2 < · · · < tK ≤ t. We propagate these human corrections to get the deformed trajectories

ξ1H , . . . , ξKH with Equation (3.2). We then perform Bayesian inference by solving Equation (3.7) and
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plugging the likelihood function into Equation (3.3). Finally, the robot uses its new understanding

of θ to solve for an updated optimal trajectory ξtR.

3.4.2 Relation to Prior Works: Independent & Final Baselines

To evaluate the effectiveness of our proposed method that reasons over correction sequences, we

compare against two baselines: Independent and Final.

Figure 3.3: Navigation Simulation. We show the sequence of corrections in the multi-agent task,
and the accuracy results of the single- and multi-agent tasks.

Independent Baseline (Online). This baseline follows the same formalism as our approach, but

assumes each human correction is conditionally independent. Hence, here we use Equation (3.4) to

learn from each correction separately. The likelihood of observing an individual correction is related

to the reward and effort associated with that correction [16]:

P (ξiH | ξiR, θ) ∝ exp
(
R(ξiH , θ)− γ∥ξiH − ξiR∥2

)
(3.9)

Final Baseline (Offline). At the other end of the spectrum, we can always look at the final

trajectory when all corrections are finished [85]. In this case, the robot learns by comparing the final

trajectory, ξKH , to the initial trajectory, ξ0R:

P (ξKH | ξ0R, θ) ∝ exp
(
R(ξKH , θ)− γ∥ξKH − ξ0R∥2

)
(3.10)

To summarize, both our method and these baselines use a Bayesian inference approach. The dif-

ference is the likelihood function: Independent assumes conditional independence, while Final only

considers the initial and final trajectory.
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3.5 Experiments

To test our proposed algorithm, we conduct experiments with human users in a simulated navigation

task and a robot manipulation task. We will discuss details that are consistent in both tasks and

then elaborate on each one respectively.

Tasks. Our two tasks are: a web-based online simulated navigation task and an in-person robot

manipulation task.

1. Navigation Simulation: In this task, a team of robots are navigating together through a specified

region as in Fig. 3.3. The robot’s objective function considered four features related to: reaching

the goal, keeping formation, avoiding the danger zone, and minimum travel distance. We test

our algorithm and baselines in different scenarios by varying robot team size, robot initial policy,

and specifying different human preference reward values.

2. Robot Manipulation: In this task, two robot arms are carrying a full grocery bag to place it

on the table. There are four features concerned in the reward: reaching the goal basket (blue

or green regions as shown in Fig. 3.1), keeping the groceries inside of the bag while avoiding

squeezing or stretching the bag, avoid touching nearby housewares such as cabinets or the hat

shown in Fig. 3.1, and minimum trajectory length for efficiency. The robot starts off with the

assumption of reaching an incorrect goal while also not realizing the bag is full, and should not

be stretched or squeezed. Users apply forces to guide the two robot arms toward the correct goal

region, while trying to keep the groceries inside of the bag.

Figure 3.4: Likelihood of three different reward parameters (θ∗, θ1, θ2) as more corrections are re-
ceived over time. The preferred reward θ∗ is shown with the darker red or blue. Each pair of
plots demonstrate the Sequence model compared with the Independent model. We demonstrate the
aggregate results over all users on the left, and the individual performance on the right. As shown
Sequence outperforms Independent in identifying the preferred reward θ∗.

Independent Variables. We compared three different inference models: reasoning over correc-

tions independently (Independent), performing inference only based on the final correction (Final),

and our model that reasons over the sequence of corrections (Sequence). Independent and our
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Sequence model can perform online inference, while Final will conduct offline inference after all

corrections are provided.

Dependent Measures. We conduct experiments with human users and evaluate the effectiveness

of the models by measuring the inference accuracy. Since we are unable to measure users’ internal

reward, we specify users’ preferred reward function out of a predefined finite set of candidate reward

parameters. We convey the preferred reward by explaining the priorities of the features to the user

and demonstrating a desired robot trajectory using the preferred reward. Users are instructed to

correct the robot to behave as optimally as possible, while minimizing their physical correction effort.

Hypotheses.

H 4. Compared to the online Independent baseline, reasoning over Sequences of corrections leads

to higher accuracy and faster convergence to the preferred reward.

H 5. Compared to the offline Final baseline, in addition to the advantages of online inference,

our Sequence model achieves higher accuracy in challenging tasks – specifically tasks where fully

correcting the robots is infeasible.

3.5.1 Navigation Simulation

Experimental Details. We recruited 15 participants for two simulated navigation tasks. Par-

ticipants interact with point-mass robots using a web browser, where they can observe the robots’

trajectories, select a robot to correct, and provide corrections using the arrow keys. We collected

data from humans for 5 episodes in two different scenarios: a simple single-agent scenario with only

one robot, and a more complex scenario containing a two-robot team. In both settings, participants

are only able to correct one robot at a time.

In both scenarios, robots’ initial trajectory goes to an incorrect goal region as shown in Fig. 3.3.

In the human’s preferred reward function, not only is going to the correct goal encouraged, but

other features are also encoded, including avoiding a danger zone and keeping the formation (equal

distance between the robots throughout the trajectories).

Results & Analysis. We compute the average inference accuracy for the two baseline methods

and our method across all users in both scenarios. The results are shown in Fig. 3.3.

Across both scenarios, our Sequence model demonstrates leading performance compared to both

the Independent and the Final baselines. One thing to note is that in the single-agent scenario, the

Final method has a comparable accuracy to our method. This indicates that in this simple task, the

user can correct the robot to behave almost optimally so that simply looking at the final trajectory

conveys sufficient information about the preferred reward. While in a more complex multi-agent

scenario, the performance of the Final method drops significantly . This is because in this complex

scenario, even if the user acts optimally, the final trajectory will still not have sufficient information
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to identify the preferred reward. In this example reasoning over sequences is dominant over only

considering the final correction.

3.5.2 Robot Manipulation

Experimental Details. We recruited 9 participants for the in-person robot manipulation task

(Fig. 3.1). Here, the two Franka Emika Panda robot arms are carrying a grocery bag to the table.

The participants are asked to physically push or pull the robot to correct its behavior. Similar to

the navigation task, the user can only correct one robot at a time, and we collected 5 episodes of

corrections from each participant.

As shown in Fig. 3.1, there are two containers on the table for the grocery bag (the blue region

and the green region). The robots’ initial plan is to carry the bag to the right toward the blue region.

However, the human wants to put the grocery to the left container. Meanwhile, since the grocery

bag is almost full, in order to keep the groceries from falling out, the participants are also instructed

not to squeeze or stretch the bag. In this setting there are three possible reward parameter θ, and

the robot tries to infer the correct reward parameter θ∗ from the human corrections.

Results & Analysis. We calculate the inference accuracy for all the three models (Independent,

Final, and Sequence), and summarize the results in Table 3.1. Our method demonstrates superior

performance compared to the baselines.

Table 3.1: Inference accuracy over 9 participants for robot manipulation.

Sequence (ours) Independent Final

accuracy (%) 82.22± 21.99 31.11± 26.99 53.33± 13.30

In addition, we illustrate the probability distribution over θ with time in Fig. 3.4. Since the Final

baseline performs the inference offline, we only visualize our Sequence model and the Independent

baseline. As can be seen, across all of the participants, the probability for the preferred reward

consistently dominates the other candidate rewards. However, for the Independent baseline, even

if the probability for the preferred reward sometimes starts off high, it ends up not being the most

likely reward as we receive more corrections. This is because in this two-robot task, redirecting the

system to the correct goal while simultaneously maintaining the shape of the bag (formation) is

not possible. The best possible corrections are: push one arm towards the goal, while stretching or

squeezing the bag by a small amount, and then push the other arm in the same direction so that the

bag shape is recovered. However, if we reason over these corrections independently, the robot will

think that the first push indicates that preserving the bag shape is not important, and this leads to

an incorrect inference.
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3.5.3 Summary

Our results empirically support both of our hypotheses H4 and H5. Our Sequence model not

only conducts an online inference, but also demonstrates superior performance specially in complex

multi-agent tasks.

3.6 Conclusion and Discussion

Summary. We developed a framework for learning from sequences of user corrections during

physical human-robot interaction. We introduced an auxiliary reward that models the connections

between corrections, and leveraged mixed-integer programming to solve for the best possible se-

quence of corrections. Our results from online and in-person users demonstrate that our approach

outperforms methods that take each correction independently, or wait for the final trajectory.

Limitations and Future Work. While our framework outperforms independent baselines across

the users, we acknowledge that our experiments were conducted using only a discrete set of candidate

reward parameters. As the number of candidate parameters increases, the inference time for our

approach would also increase linearly, which can limit its scalability. Additionally, dealing with a

distribution over continuous reward parameters presents further challenge that we intend to explore

in future work.



Chapter 4

Influencing Leading and Following

in Human-Robot Teams

4.1 Introduction

Humans are capable of seamlessly interacting and collaborating with each other. They can easily

form teams and decide if they should follow or lead to efficiently complete a task as a group.

This is apparent in sports teams, human driving behavior, or simply having two people move a

table together. Similarly, humans and robots are expected to seamlessly interact with each other

to achieve collaborative tasks. Examples include collaborative manufacturing, search and rescue

missions, and in an implicit way, collaborating on roads shared by autonomous and human-driven

cars.

In these collaborative teamwork scenarios, an important challenge for robots is to understand

and interact with human agents seamlessly and even further influence a human team to achieve a

desired goal. For instance, imagine a mixed human-robot search and rescue mission with no direct

communication capabilities similar to Fig. 4.1. When a quadcopter senses valuable information

from the environment how should the quadcopter direct the rest of its human teammates toward

the desired goal?

One common solution is to assign leading and following roles to the team a priori before starting

the search and rescue mission. Many current human-robot interactions determine leader-follower

roles beforehand [59, 98, 114, 175, 189, 63, 161]. This include tasks that require learning from

demonstrations or preferences, where the human is considered as the leader and the robot is the

follower [36, 4, 1, 200, 47, 140, 24, 146], or assistive tasks where the robot teaches or assists human

users [157, 95, 120, 89, 108]. However, assigning leadership roles a priori is not always feasible in

dynamically changing environments or long-term interactions.

35
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Figure 4.1: A search and rescue example, where a team of humans intend to rescue people from
two islands shown in green. The quadcopter collects more information and determines that the
team should head towards the island on the right. It guides the human team toward the island
on the right using a graph representation that models the human team. We estimate leading and
following relationships in human teams (denoted by the arrows), and use this to create influential
robot policies. The black arrows represent intended human leading and following behaviors whereas
the grey arrows represent updated leading and following behaviors after the influencing robot action.

There has also been significant prior work on how we can construct intelligent robot policies that

induce desired behaviors from people [163, 73, 138, 139, 23, 193, 116]. However, all of these works

optimize for robot policies that influence only a single human in one-on-one interactions. These

works are able to successfully produce influencing behaviors by keeping an estimate of the human’s

state and optimize for actions based on the estimation, which is often computationally intractable

with larger groups of humans.

Instead of keeping track of each individual’s state in a team, we propose a more scalable method

that estimates the collective team’s state. Similar to individuals, teams exhibit behavioral patterns

and structures that robots can use to create intelligent influencing policies. One particular feature

of human teams we will focus on in this work is leading and following relationships.

Our key insight is that there exists an underlying graphical structure encoding the larger

and more complex interactions between humans in team settings.

In this chapter, we develop a scalable approach to extract meaningful latent structures in teams of

humans that represent their leading and following behaviors. We extract an underlying graph, leader-

follower graph (LFG), to represent the global pattern of leader-follower dynamics using information

from local, pairwise leader-follower interactions that we learn using supervised learning techniques.

This structure provides a concise and informative representation of the current state of the team

and can be used in planning. We then develop novel strategies for robots who join the human

team to efficiently estimate the leader-follower graph and further influence this structure to more
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efficiently achieve the team’s goals. For instance, as shown in Fig. 4.1, there is an underlying team

structure between the humans who are collaboratively navigating towards the left goal. However, a

robot capable of estimating this underlying structure through the leader-follower graph can follow

strategies that collectively influence the team to instead navigate the team towards the right goal,

which could lead to a more desirable outcome.

We demonstrate the generalizability of our approach by applying our framework to a second type

of group dynamics: predator-prey relationships. We show that we are able to successfully model

predator-prey relationships using leader-follower graphs (LFGs). We also demonstrate that a robot

using this LFG model is able to influence predator-prey dynamics.

Our contributions in this chapter are as follows:

• Formalizing and learning a graphical structure that captures complex relationships between

members in human teams.

• Developing optimization-based robot strategies that leverage the graph representation to in-

fluence the team towards a more efficient objective.

• Providing simulation experiments in a pursuit-evasion game demonstrating the robot’s influ-

encing strategies to reverse a leader-follower relationship, distract a team, and lead a team

towards an optimal goal based on its learned leader-follower graph.

• Generalizing our framework to a predator-prey domain and showing that our framework can

still successfully model group dynamics, scalably deal with different group sizes, and can be

used to design influencing policies.

In the rest of this chapter, we first discuss relevant work on modeling teams, influencing teams,

and ad hoc teamwork in Section 4.2. We then describe our formalism and algorithm for learning

graphical representations of human teams in the leader-follower domain (Sections 4.3-4.5) followed

by the predator-prey domain(Sections 4.6-4.8). Finally, we describe our experiments in the leader-

follower domain (Section 4.9) and the predator-prey domain (Section 4.10) followed by a discussion

of limitations and future works.

4.2 Related Work

4.2.1 Modeling Teams

Finding computationally efficient ways to model human teams is an important part of this work.

These models can be used to design intelligent policies that allow an agent to influence or coordinate

with the team. We review ways in which prior works have modeled groups of agents.

Flocks and Swarms. Many works model flocks and swarms inspired by animal flocking be-

havior [61, 40, 160, 178]. These models describe how groups reach consensus in orientation when



CHAPTER 4. INFLUENCING LEADING & FOLLOWING IN HUMAN-ROBOT TEAMS 38

navigating a space. They generally assume that all agents are homogenous and that they follow

the same, relatively simple, update rule. Important components of this update rule include aligning

orientation with their neighbors, positional attraction and repulsion towards neighbors, and some

noise [61]. For example, Cristiani and Piccoli are able to replicate many self-organized patterns found

in nature by modeling long-range cohesion, short-range repulsion, and the agents’ visual fields [40].

Rosenthal et al. show that all agents are not equally susceptible to being influenced. They show

that individuals with relatively few strongly connected neighbors are both more socially influential

and susceptible to being influenced [160]. While these models are computationally efficient, they are

too simplistic to be able to capture social dynamics that occur in human teams.

Attention and Graph Neural Networks. Recently, graph neural networks that use attention

have become popular for modeling agent interactions [80, 109, 84, 91]. Attention is generally used to

learn edge weights between agents. Vertex Attention Interaction Network (VAIN) uses attention to

capture local structure by allowing the network to determine which agents will share information [80].

Li et al. uses self-attention to find structure in a coordination graph and then uses graph neural

networks to integrate information among all agents [109]. Jiang et al. uses multi-head dot product

attention to extract relations among neighboring agents in order to increase agents’ receptive fields.

Latent features are then extracted from these enlarged receptive fields to learn cooperative poli-

cies [91]. Compared to our approach, attention-based methods generally have more parameters and

thus require more data to train. However, using attention-based methods to model human teams

could be promising future work.

Modeling Humans. While there are many works that model multiagent systems, the extent to

which these models can generalize to groups of humans remains underexplored. Many works in

cognitive science, psychology, and behavioral economics have created predictive models of humans

by modeling their biases and suboptimalities. For instance, Ordonez and Benson III investigated

how humans make decisions under time constraints [143]. Simon developed the concept of bounded

rationality to reflect limited humans’ limited cognitive resources [172]. Tversky and Kahneman

developed Cumulative Prospect Theory to capture human-decision making under risk and uncer-

tainty [187]. In robotics, being able to successfully predict human behavior has shown to improve

performance on tasks such as assistive robotics [108, 120, 89, 50], autonomous driving [165, 164, 14],

collaborative games [136], and motion planning [201, 126]. The noisy rational choice model has

been an extremely popular choice due to its simplicity [25, 24, 21, 54, 17]. Other models include

the adoption of Cumulative Prospect Theory for human-robot interaction [101], models of human

driving [66, 112], as well as learning-based models [131, 145].

In addition to explicitly modeling human behavior, robots have also been able to infer human

preferences through interactions using partially observable Markov decision processes (POMDPs)

which allow reasoning over uncertainty on the humans’ internal state or intent [31, 48, 103, 124, 88,

164]. Human’s intent inference has also been achieved through human-robot cross-training [140] as
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well as various other approximations to POMDP solutions such as augmented MDPs, belief space

planning, approximating reachable belief space, and decentralization [3, 99, 100, 142, 149, 162].

However, these methods usually focus on modeling a single human agent and do not capture social

dynamics that occur among humans.

4.2.2 Influencing Teams

Given a model of a team, an important next question is how a more informed agent can use this

model to coordinate with or influence the team.

Flocks and Swarms. Literature on influencing flocks and swarms looks at how informed agents can

guide the group towards a preferred direction. This is similar to some of our evaluation tasks where

the robot agent attempts to guide the human team towards a particular goal. The homogeneity

and simple nature of agents in flocks and swarms allow for leader agents to implicitly influence the

group. More specifically, implicit leadership algorithms allow a group of agents to reach consensus

where each agent can observe their neighbors’ states within a particular radius. As agents attempt

to align their orientation with their neighbors’, this empowers informed agents to lead [197, 58].

Prior work has also examined properties that make a swarm more susceptible to influence. Couzin

et al. show that in groups of animals, only a small proportion of informed agents are required, and

the larger the group, a smaller the proportion of informed individuals are needed [39]. Celikkanat

et al. study the extent to which informed individuals can lead a flock by varying three factors: (1)

the weight of the direction of preference (2) the ratio of informed individuals and (3) the size of the

flock. They find that a flock is easier to control when moderate weight is put on the direction of

preference (2) larger flock sizes and (3) more agents attempt to align their states with neighboring

agents’ states [34]. It is difficult to apply these findings to human teams due to the simplicity of

flock and swarm models.

Human-Swarm Interaction. There has also been considerable work on how humans can influence

flocks and swarms. Tiwari et al. consider the problem of leader placement when steering a large

robot swarm [183]. Robots can either be controlled by a human or behave according to a swarm

model. The authors consider which robots are positionally best equipped to influence the swarm

(front, middle, or periphery). Kerman et al. and Brown et al. also consider how humans can

influence swarms by controlling a subset of them [97, 30]. They show that humans are able to lead

the swarm to switch from torus to flock formations and vice versa. Our work tackles the reverse

problem where a robot agent must influence a team of humans.

4.2.3 Ad Hoc Teaming

An autonomous ad hoc agent must both model and influence a team that it has never seen be-

fore [176]. The ad hoc setting is similar to ours in that we expect our robot agent to influence a
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human team that it has never worked with before. Ad hoc teaming has been studied in the multi-

armed bandit setting where a teacher needs to trade off between teaching a new learning agent and

exploitation [177, 20]. Role assignment in ad hoc teams have also been studied [28, 60]. Typically, an

ad hoc agent needs to select a role such that it maximizes the team’s utility. For instance, in Bowling

and McCracken’s work, teammates assign a role to the agent and the agent’s job is to infer its role

by simulating plays and selecting the one that is most similar to current teammate behavior [28].

Liemhetcharat models how well agents work together in ad hoc teams using a graph; nodes repre-

sent agents, their value represent the agent’s capabilities, and agent synergy is determined by their

capabilities and how far apart they are located from other agents in the graph [113]. Liemhetcharat

describes how to learn this graph based on observations of team performance and then use this model

to plan for creating effective ad hoc teams. Barrett et al. introduce model-based and model-free

algorithms that allows ad hoc agents to collaborate with a variety of different teammates [19]. The

algorithms either learn models about prior teammates or policies on how to collaborate with prior

teammates, and uses this knowledge to interact with current teammates. Albrecht assumes that

agents can be characterized into a set of policies drawn from some unknown distribution [5]. The

author uses a Bayesian approach where agents update their posterior beliefs about types of other

agents which can then be used for planning. While many of these ad hoc teaming works focus on

modeling different types of potential teammates, in this work, we focus on modeling a specific type

of latent group dynamics — leading and following graphs — in order to enable a robot to interact

with an unknown team.

4.3 Formalism for Modeling Leading and Following in Hu-

man Teams

Running Example: Pursuit-Evasion Game. We define a multi-player pursuit-evasion game on

a 2D plane as our main running example. In this game, each pursuer is an agent in the set of agents

I that can take actions in the 2D space to navigate. There are a number of stationary evaders,

which we refer to as goals. The objective of the pursuers is to collaboratively capture the evaders

(goals). Fig. 4.2 shows an example of a game with three pursuers, shown in orange, and three goals,

shown in green. The action space of each agent is identical, Ai = {move up, move down, move left,

move right, stay still}; the action spaces of all agents collectively define the joint action space A.

All pursuers must jointly and implicitly agree on a goal to target, and a goal will be captured when

all pursuers collide with it as shown in Fig. 4.2 (b).

Leaders and Followers. We define a set of goals g ∈ G, which abstracts the idea of the agents

reaching a set of states in order to fully optimize the joint reward function. For instance, in a

pursuit-evasion game, the goals informally correspond to the evaders that need to be captured by all

the pursuers, i.e., all the agents (pursuers) need to reach a state corresponding to the goals (evaders)
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Figure 4.2: Pursuit-evasion game. (Left) we demonstrate a pursuit-evasion game with three goals
(green circles), and three pursuers (orange circles). The pursuers must jointly agree on moving
toward a target. (Right) The three pursuers move to g1 to capture it.

being captured. A goal in G intuitively signifies a way for the agents to coordinate strategies with

each other. For instance, in a pursuit-evasion game, the agents should collaboratively plan on actions

that capture the goals. To put this in the context of leading and following, when agents capture a

goal, the goal can be thought of as being followed.

Each agent i ∈ I follows a goal or another agent, which we refer to as a leader. Formally we let

li ∈ G ∪ I, where li is either an agent or a fixed goal g who is the leader of agent i (agent i follows

li). This is shown in Fig. 4.3 (a), where agent 2 follows goal g1 (l2 = g1) and agent 3 follows agent

2 (l3 = 2).
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Figure 4.3: (a) Leader-follower graph. Green islands are the goals that need to be captured. Orange
circles are the pursuers. (b) Cyclic leader-follower graph. We design policies that avoid such cyclic
behaviors. (c) Chain behavior in the leader-follower graph. (d) Multiple teams.

Leader-Follower Graph. The set of leaders and followers form a directed leader-follower graph

as shown in Fig. 4.3 (a). Each node represents an agent i ∈ I or goal g ∈ G. The directed edges

represent leading-following relationships, where there is an outgoing edge from a follower to its

leader. The weights on the edges represent a leadership score, which is the probability that the tail

node is the head node’s leader. For instance, in Fig. 4.3 (a), w3,2 represents the probability that 2

is 3’s leader. The leader-follower graph is dynamic in that agents can decide to change their leaders
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at any time. We assume that there could be an implicit transitivity in a leader-follower graph, i.e.,

if an agent i follows an agent j, implicitly it could be following the agent j’s believed ultimate goal.

Some patterns are not desirable in a leader-follower graph. For instance, an agent would never

follow itself, and we do not expect to observe cycling leading-following behaviors (Fig. 4.3 b). Other

patterns that are likely include: chain patterns (Fig. 4.3 c) or patterns with multiple teams where

multiple agents directly follow goals (Fig. 4.3 d). We describe how to construct a leader-follower

graph that is scalable with the number of agents and avoids the undesirable patterns in Sec. 4.4.

Partial Observability. The leader of each agent, li, is a latent variable. We assume that agents

cannot directly observe the leading and following dynamics of other agents. Thus, constructing

leader-follower graphs can help robot teammates predict who will follow whom, allowing them to

strategically influence teammates to adapt roles. We assume agents have full information on the

observations of themselves and all other agents. (e.g. positions and velocities of agents).

4.4 Construction of a Leader-Follower Graph

In this section, we focus on constructing the leader-follower graph that emerges in collaborative

teams. We will first focus on learning pairwise relationships between agents using a supervised

learning approach. We then generalize our dyadic scoring to multi-player settings using graph

theoretic algorithms. This combination of data-driven and graph-theoretic approaches allows the

leader-follower graph to efficiently scale up with the number of agents. Our aim is to leverage this

leader-follower graph to enable robot teammates to produce helpful leading behaviors.

4.4.1 Pairwise Leadership Scores

We first focus on learning the probability of any agent i following any goal or agent j ∈ G ∪ I. The

pairwise probabilities help us estimate the leadership score wi,j , i.e., the weight of the edge (i, j) in

the leader-follower graph.

We develop a general framework of estimating the leadership scores using a supervised learning

approach. Consider a two-player setting where I = {i, j}, we collect labeled data where agent i

is asked to follow j, and agent j is asked to optimize for the joint reward function assuming it is

leading i, i.e., following a fixed goal g in the pursuit-evasion game (li = j and lj = g). We then train

a LSTM network with a softmax layer to predict each agent’s most likely leader.

Data Collection. We collect labeled human data by asking participants to play a pursuit evasion

game. We recruited pairs of humans and randomly assigned leaders li to them (i.e., another agent

or a goal). Participants played the game in a web browser using their arrow keys and were asked

to move toward their assigned leader, li. In order to create a balanced dataset, we collected data

from all possible configurations of leaders and followers in a two-player setting (the configurations

are shown in Fig. 4.7). We collected a total of 186 games.
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Since human data is often noisy and difficult to collect in large amounts; we further augmented

our dataset with synthetic data, where we had simulated humans play the game. We simulated

humans based on a potential field path planner [18]. Agents at location q plan their path under

the influence of an artificial potential field U(q), which is constructed to reflect the environment.

Agents moved toward their leaders by following an attractive potential field. Other agents and goals

that are not their leaders are treated as obstacles that emit a repulsive potential field. In our game

setting, the position of agent’s assigned leader li is given an attractive potential field. The rest of

the goals and agents are expressed as repulsive potentials.

Potential Field for Simulated Human Planning. We denote the set of attractions as A, and
the set of repulsive obstacles as R. The overall potential field is a weighted sum of potential fields

from all attractive and repulsive obstacles. θi is the weight for attractive potential field from i ∈ A,
and θj is the weight for repulsive potential field from j ∈ R.

U(q) =
∑
i∈A

θiU
i
att(q) +

∑
j∈R

θjU
j
rep(q) (4.1)

The optimal action a that an agent would take lies in the direction of the potential field gradient.

a = −∇U(q) = −
∑
i∈A

θi∇U i
att(q)−

∑
j∈R

θj∇U j
rep(q)

In our implementation, the attractive potential field increases as the distance to goal becomes

larger to help the agent reach the goal. On the other hand, the repulsive potential field has a fixed

effective range, within which the potential field increases as the distance to the obstacle decreases.

The attractive and repulsive potential fields are constructed in the same way for all attractive and

repulsive obstacles. Specifically, the attractive potential field of attraction i, denoted as U i
att(q), is

constructed as the square of the Euclidean distance ρi(q) between agent at location q and attraction

i at location qi. In this way, the attraction increases as the distance to goal becomes larger. ϵ is

the hyper-parameter for controlling how strong the attraction is and has consistent value for all

attractions.

ρi(q) = ∥q − qi∥

U i
att(q) =

1
2ϵρi(q)

2

−∇U i
att(q) = −ϵρi(q)(∇ρi(q))

The repulsive potential field U j
rep(q) is used for obstacle avoidance. It usually has a limited effective

radius since we do not want the obstacle to affect agents’ planning if they are far way from each

other. Our choice for U j
rep(q) has a limited range γ0, where the value is zero outside the range.

Within distance γ0, the repulsive potential field increases as the agent approaches the obstacle.
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Thus, to compute the repulsive potential field to obstacle j at location q, we first identify the

minimum distance γj(q) between q and the obstacle j as in Eq.(4.2). Coefficient η and range γ0

are the hyper-parameters for controlling how conservative we want our collision avoidance to be and

is consistent for all obstacles. Larger values of η and γ0 mean that we are more conservative with

collision avoidance and want the agent to keep a larger distance to obstacles.

γj(q) = min
q′∈obsj

∥q − q′∥

U j
rep(q) =

{
1
2η(

1
γj(q)

− 1
γ0
)2 γj(q) < γ0

0 γj(q) > γ0

∇U j
rep(q) =

{
η( 1

γj(q)
− 1

γ0
)( 1

γj(q)2
)∇γ(q) γ(q)j < γ0

0 γj(q) > γ0

(4.2)

In our experiments, we find that our simulations are good approximations of human behavior.

The simple nature of the task given to humans (i.e., move directly toward your assigned leader li)

is easily replicated in simulation.
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Figure 4.4: Scalable neural network architecture. This example predicts the probability of another
agent j being agent 2’s leader, w2,j . There are three LSTM submodules used because there are two
possible evaders and one possible agent that could be agent 2’s leader. This architecture demon-
strates how one can select P-P and P-E modules and discover the leader-follower relationships in a
more scalable and compositional manner.

Training with a Scalable Network Architecture. Our network architecture consists of two

LSTM submodules, one to predict player-player leader-follower relationships (P-P LSTM) and one

to predict player-evader relationships (P-E LSTM). We use a softmax output layer with a cross-

entropy loss function to get a probability distribution over j and all goals g ∈ G of being i’s leader.

We take the leader (an agent or a goal) with the highest probability and assign this as the leadership
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score. The P-P and P-E submodules allow us to scale training to a game of any number of players

and evaders as we can add or remove P-P and P-E submodules depending on the number of players

and evaders in a game. An example of our scalable network architecture is illustrated in Fig. 4.4.

Evaluating Pairwise Scores. Our network trained on two-player simulated data successfully

captured the pairwise leading-following relationship (training accuracy: 80%, validation accuracy:

83%). We also experimented with training with three-player simulated data as well as a combination

of two-player simulated and human data (two-player mixed data) resulting in (training accuracy:

97%, validation accuracy: 75%).

Validation results are shown in Fig. 4.5. Our model trained with mixed two-player data was first

trained on simulated data and then trained on human data. For this reason, we have represented

the mixed-data model as a horizontal line in Fig. 4.5 demonstrating the final validation accuracy.
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Figure 4.5: Validation accuracy when calculating pairwise leadership scores trained on simulated,
human, and mixed data (simulated & human), described in Sec. 4.4.1

4.4.2 Maximum Likelihood Leader-Follower Graph

To build a leader-follower graph in settings with more than two players, we compute pairwise weights

wi,j of leader-follower relationships between all possible pairs of leaders i and followers j. The

pairwise weights (leadership scores) can be computed based on the supervised learning approach

described above, indicating the probability of one agent or goal being another agents’ leader. After

computing wi,j for all combinations of leaders and followers, we can create a directed graph G =

(V,E) where V = I ∪ G and E = {(i, j)|i ∈ I, j ∈ I ∪ G, i ̸= j}, and the weights on each edge

(i, j) correspond to wi,j . In addition, we add a special root node, where all the goals g ∈ G have an

outgoing edge to the root node. This produces a fully connected graph with each edge corresponding

to the probability of one agent leading another, as shown in Fig. 4.6 (a).

Our model builds the graph based on the the pairwise scores, and thus can generalize to groups
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Figure 4.6: (a) Graph G. The directed edges represent pairwise likelihoods that the tail node is the
head node’s leader. (b) Maximum-likelihood leader-follower graph, G∗. For each node, we select the
outgoing edge that has the highest weight as shown by the bold edges.

with different sizes. The computation increases quadratically with the size of the graph along with

the number of pairs.

To create a more useful graph, we extract the maximum likelihood leader-follower graph G∗ by

pruning the edges of our constructed graph G. We prune the graph by greedily selecting the outgoing

edge with highest weight for each agent node. In other words, we select the edge associated with

the agent or goal that has the highest probability of being agent i’s leader, where the probabilities

correspond to edge weights as in Fig. 4.6 (b). When pruning, we make sure that no cycles are

formed. If we find a cycle, we will choose the next probable edge. Our pruning approach is inspired

by Edmonds’ algorithm [53, 37], which finds a maximum weight arborescence [96] in a graph. An

arborescence is an acyclic directed tree structure, where there is exactly one outgoing edge from a

node to another. We use a modified version of Edmonds’ algorithm since, compared to our approach,

a maximum weight arborescence is more restrictive; it requires the resulting graph to be a tree.

Evaluating the Leader-Follower Graph. We evaluate how accurate our leader-follower graph

with three or more agents is when trained on simulated two-player and three-player data, as well

as a combination of simulated and human two-player data (shown in Table 4.1). We evaluated

our leader-follower graph on simulated three, four, and five-player games, as well as two and three-

player human games. In each of these multi-player games, we extracted a leader-follower graph at

each timestep and compared our leader-follower graph’s predictions against the ground-truth labels.

Our leader-follower graph performs better than random guessing by a large margin. The random

policy selects a leader li ∈ I ∪ G for agent i at random, where li ̸= i. The chance of being right

is thus 1
|G|+|I|−1 . We then take the average of all success probabilities for all leader-follower graph

configurations to compute the overall accuracy. As an example, for two-player games, there are in

total three possible configurations as shown in Fig. 4.7. We compute the overall accuracy of the

game by averaging 1
2 ,

1
2 and 1

3 , giving 0.44 (line 4, Table 4.1).
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Figure 4.7: All possible leader-follower graph configurations for two-player settings.

Table 4.1: Generalization accuracy (Acc) of leader-follower graph (LFG) trained and tested with
various data sources.

Training
Data

Testing
Data

LFG
Acc

Random
Acc

2 players, simulated 3 players, simulated 0.67 0.29
2 players, simulated 4 players, simulated 0.45 0.23
2 players, simulated 5 players, simulated 0.41 0.19
2 players, simulated 2 players, human 0.68 0.44
2 players, simulated 3 players, human 0.47 0.29

3 players, simulated 4 players, simulated 0.53 0.23
3 players, simulated 5 players, simulated 0.50 0.19
3 players, simulated 3 players, human 0.63 0.29

2 players, mixed 3 players, simulated 0.44 0.29
2 players, mixed 4 players, simulated 0.38 0.23
2 players, mixed 5 players, simulated 0.28 0.19
2 players, mixed 2 players, human 0.69 0.44
2 players, mixed 3 players, human 0.44 0.29

In all experiments shown in Table 4.1, our trained model clearly outperforms the random policy.

Most notably, the models trained on simulated data scale naturally to settings with large numbers

of players as well as human data. We use the model trained on three-player simulated data for our

experiments in Section 4.5.

4.5 Planning based on Inference over Leader-Follower Graphs

With a representation for latent leadership structures in human teams, we use a leader-follower graph

G∗ to positively influence human teams, i.e., move the team towards a more desirable outcome. We

describe how a robot can use the leader-follower graph to infer useful team structures. We then

describe how a robot can leverage these inferences to plan for a desired outcome.
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Figure 4.8: (a) In this graph, the most influential leader is agent 2. (b) The most influential leader
trivially becomes agent 1 since agents 2 and 3 are already targeting the optimal goal g∗1 .

4.5.1 Inference Based on Leader-Follower Graph

Leader-follower graphs enable a robot to infer useful information about a team such as agents’

goals or who the most influential leader is. These pieces of information allow the robot to identify

key goals or agents that are useful in achieving a desired outcome (e.g., identifying shared goals

in a collaborative task). A robot can then plan for a desired outcome by influencing or following

these key goals and agents. We begin by describing different inferences a robot can perform on the

leader-follower graph.

Goal Inference in Multiagent Settings. One way a robot can use structure in the leader-

follower graph is to perform goal inference. An agent’s goal can be inferred by the outgoing edges

from agents to goals. In the case where there is an outgoing edge from an agent to another agent

(i.e., agent i follows agent j), we assume transitivity, where agent i can be implicitly following agent

j’s believed ultimate goal. Being able to quickly infer the goal of multiple agents enables the robot

to plan efficiently.

Influencing the Most Influential Leader. In order to lead a team toward a desired goal, the

robot can also leverage the leader-follower graph to predict who the most influential leader is. We

define the most influential leader to be the agent i ∈ I with the most number of followers. Identifying

the most influential leader allows the robot to strategically influence a single teammate that also

indirectly influences the other teammates that are following the most influential leader. For example,

in Fig. 4.8 (a) and (b), we show two examples of identifying the most influential leader from G∗. In
the case where some of agents are already going for the preferred goal, the one that has the most

followers among the remaining players becomes the most influential leader, as shown in Fig. 4.8 (b).
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4.5.2 Optimization Based on Leader-Follower Graph

The leader-follower graph allows the robot to single out key players and goals to follow or influence.

A robot can then use this information to directly optimize for actions that help it achieve a desired

outcome: Outcomes such as following the crowd or influencing the crowd’s decision through utilizing

the leader-follower graph. For instance, the probability of the robot becoming an agent i’s leader

can be expressed as wi,r. The probability of the robot following a goal g is wr,g.

To select actions a ∈ A that maximize an objective involving weights wi,j in the leader-follower

graph, we generate graphs Gat

t+k that simulate what the leader-follower graph would look like at

timestep t+k if the robot takes an action at at current timestep t. Over the next k steps, we assume

human agents will continue along the current trajectory with constant velocity.

From each graph Gat

t+k, we can obtain the weights wt+k
i,j corresponding to an objective that the

robot is optimizing for (e.g., the robot becoming agent i’s leader). We then optimize over the robot’s

actions to find the action a∗t that maximizes a reward/outcome r that can be expressed in terms of

wt+k
i,j ’s and wt+k

i,g ’s.

a∗t = argmax
at∈A

r
(
{wt+k

i,j (at)}i,j∈I , {wt+k
i,g (at)}i∈I,g∈G

)
(4.3)

We describe three specific tasks that we will plan for using the optimization described in Eqn. (4.3).

Reversing a Leader-Follower Relationship. A robot can directly influence team dynamics by

changing leader-follower relationships. Given a directed edge between agents i and j, the robot can

use the optimization outlined in Eqn. (4.3) for actions that reverse an edge or direct the edge to a

different agent. For instance, to reverse the direction of the edge from agent i to agent j, the robot

will select actions that maximize the probability of agent j following agent i:

a∗t = argmax
at∈A

wt+k
j,i (at), i, j ∈ I

The robot can also take actions to eliminate an edge between agents i and j by minimizing wi,j .

One might want to modify edges in the leader-follower graph when trying to change the leadership

structure in a team. For instance, in a setting where agents must collectively decide on a goal, a

robot can help unify a team with sub-groups (an example is shown in Fig. 4.3 (d)) by re-directing

the edges of one sub-group to follow another. On the other hand, the robot can also redirect edges

such that the team is dispersed, or reverse edges such that the edges form a cycle as shown in

Fig. 4.3 (b).

Distracting a Team. In adversarial settings, a robot might want to prevent a team of humans from

reaching a collective goal g. In order to stall the team, a robot can use the leader-follower graph

to identify who the current most influential leader i∗ is. The robot can then select actions that

maximize the probability of the robot becoming the most influential leader’s leader and minimize
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Figure 4.9: (a) Example of a predator-prey dynamic in capture the flag. Red and blue circles
represent agents on different teams. (b) Another example of a predator-prey dynamic between
members of red and blue teams. (c) Predator-prey graph where the most likely edges are bolded.
(d) The robot joins the game as agent 2’s predator.

the probability of the most influential leader following the collective goal g:

a∗t = argmax
at∈A

wt+k
i∗r (at)− wt+k

i∗g (at), i∗ ∈ I (4.4)

Distracting a team from reaching a collective goal can be useful in cases where the team is an

adversary. For instance, a team of military drones masquerading as enemy drones may want to

prevent the enemy team from reaching a joint goal.

Leading a Team Towards the Optimal Goal. In collaborative settings where the team needs

to agree on a goal g ∈ G, a robot that knows where the optimal goal g∗ ∈ G is should maximize

joint utility by leading all of its teammates to reach g∗. To influence the team, the robot can use

the leader-follower graph to infer who the current most influential leader i∗ is. The robot can then

select actions that maximize the probability of the most influential leader following the optimal goal

g∗:

a∗t = argmax
at∈A

wt+k
i∗g∗(at), i∗ ∈ I

Being able to lead a team of humans to a goal is useful in many real-life scenarios. For instance, in

search-and-rescue missions, robots with more information about the location of survivors should be

able to lead the team in the optimal direction.

4.6 Modeling Predator-Prey Relationships

We test the generalizability of our framework by modeling a different type of group dynamics:

predator-prey relationships. Each agent has either a prey that they are trying to capture, predators

they are eluding, or both. Predator-prey relationships are different from leader-follower relationships

in that agents are tasked with eluding their predator. In some cases, agents must simultaneously

capture their prey while eluding their predator, giving way to more complex dynamics than leading
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and following. In human groups, predator-prey relationships can be found in games such as capture-

the-flag. In capture-the flag, two teams guard regions that contain each team’s flag. The goal of a

team is to steal the other team’s flag while protecting their own. Predator-prey relationships emerge

when team members attempt to tag out members of the opposing team. An example is shown in

Fig. 4.9 (a), where members of the blue team (agents 2 and 4) help their teammate (agent 1) escape

from the opposing team.

Predator-Prey Game. We modify the pursuit-evasion game setup described in Sec. 4.3. In the

modified version, there are no stationary evaders (goals). Instead, each agent in the set of agents

I acts as either a predator, prey, or both. Predator agents are assigned a prey and are required to

capture it by colliding with them. Likewise, prey agents have assigned predators and their goal is to

avoid being captured. The action space of each agent i ∈ I is identical as in Sec. 4.3, Ai = {move

up, move down, move left, move right, stay still}.

Predator-Prey Graph. Using the set of predators and preys, we can form a directed predator-prey

graph. Each node represents an agent i ∈ I. The directed edges represent predator-prey relationships

where there is an outgoing edge from a predator to its prey. The weights on the edges represent the

probability that the tail node is the head node’s predator. Similar to leader-follower graphs, there

can be many configurations of predator-prey graphs; two examples are shown in Figs. 4.9 (a) and

(b). In this work, we experiment with various configurations of the predator-prey to validate that

our framework can effectively capture these relationships between the agents in this predator-prey

domain.

4.7 Construction of a Predator-Prey Graph

In this section, we describe how we learn these graphs. Similar to our leader-follower graphs, we use

a supervised learning approach where we collect pairwise predator-prey data to train a predictive

model. Like the leader-follower graph, our aim is to use this model to scalably construct a predator-

prey graph for multi-agent settings. Ultimately, we hope to use this graph to build robot algorithms

that can understand and influence predator-prey dynamics.

4.7.1 Pairwise Prey Scores

Data Collection. We recruited dyads to play the predator-prey game. We assumed a chain-

structured predator-prey relationship. Predator and prey roles were randomly assigned to each

partner. Participants played the game in the web browser where predators tried to collide with their

prey as many times as possible within the time limit. We collected a total of 1.5 hours of data where

we collected trajectories and scores of each participant.

We also generated synthetic human data using the same potential field simulator as described in

Sec. 4.4.1). At the beginning of each game, each agent was randomly assigned one prey or no prey.
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Only configurations that contain no loops are considered valid. By randomly assigning preys, we

effectively covered all possible valid configurations. In our simulator, predators moved towards their

prey by following an attractive potential field and prey moved away following a negative potential

field. We simulated 1000 three-agent predator prey games. We chose three-agent games for data

collection because to have agents that being both a predator and a prey, the minimal number of

agents in the game is three.

Training the Model. To test the generalization of our framework in this new domain, we use

the same LSTM submodules as in Sec. 4.4 to predict player-player predator-prey relationships. For

each agent i ∈ I in a game, we train our model to predict agent i’s prey by feeding their and their

partner’s trajectory data into our submodules. We add an additional submodule where the agent

i’s trajectories are fed in twice to represent the event that the agent does not have prey. We use a

softmax output layer with a cross-entropy loss function to compute a probability distribution over

all agents of being agent i’s prey. Before training, we pre-processed the data by normalizing it,

shifting it to have a zero-centered mean, and down-sampled it. When training our network, we used

the same hyperparameters as described in Sec. 4.4.

Evaluating Pairwise Scores. We evaluated the accuracy of our model on held out test sets of

simulated and human data. Our network trained on three-player data performed with a validation

accuracy of 95.51% in simulation with randomized predator-prey graph structure and 96.24% on

human data with a chain structure. Both results indicate that our framework can accurately capture

the predator-prey pairwise relationship.

4.7.2 Constructing and Evaluating the Predator-Prey Graph

In settings with more than three players, we construct a predator-prey graph based on the pairwise

scores. For each agent i, we compute pairwise weights between agent i and all of its possible preys

j ∈ I, j ̸= i. In this Predator-Prey domain, we also compute an additional weight for agent i having

no prey. With all of these scores, we then construct the graph as described in Sec. 4.4.

Evaluating the Predator-Prey Graph. We tested the generalization accuracy of the predator-

prey graph by constructing the graph at each time step and comparing it against the ground truth

labels. The results for testing on real human data and simulated data are demonstrated in Fig. 4.10

respectively. We found that the model trained with three agent data can successfully generalize to

settings with more players with only a minor decrease on the accuracy. Similar patterns to Table 4.1

can also be observed here where the accuracy drops with larger numbers of agents. This is because

as the number of agents increases, the task becomes more challenging and it becomes more difficult

for the model to distinguish which agent is the prey.
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Figure 4.10: Generalization accuracy of the predator-prey graph tested with simulated agents and
human data. Both models are trained with three-agent data and we tested models in games that
contain more agents.

4.8 Planning with the Predator-Prey Graphs

We now leverage the information from the predator-prey graph to plan for robot behaviors that

can influence group dynamics. In this work, we focus on the task of becoming the only dominant

predator among the chain-structured predator-prey group. Accomplishing this task requires two

steps. First we need to identify which agent is the top predator, and then we want the robot to hunt

for that identified top predator.

Inference Based on Predator-Prey Graph. One direct way to identify which agent is the top

predator is to identify the agent that has no predator based on the estimated predator-prey graph.

For example, as in Fig. 4.9 (b), agent 1 is the top predator. In this work, we experiment with a

predator-prey chain, and therefore, there is only one top predator among the group.
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Figure 4.11: Adversarial game snapshots for a 300 second horizon. The orange circles are human
agents. (a) Agents 1 and 2 start very close to g1. (b-c) The robot prevents agent 2 from converging
on g1. (d) The robot leads agent 2 to another goal, successfully extending the game time.

Optimization Based on Predator-Prey Graph. After identifying the top predator, we can
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now again use the predator-prey graph for optimization. At each time step t, we infer the top

predator Xt based on the current predator-prey graph. Then, similar to Sec. 4.5, we generate the

predator-prey graph k time steps ahead GAt

t+k, assuming the robot takes actions At = (at, . . . , ak) in

the next k time steps. We then extract the weight wt+k
j,Xt

representing robot j being the predator of

the identified top predator Xt from the graph GAt+k. By maximizing this weight, we can compute

the optimal robot actions:

At = (at, . . . , ak) = argmax
At=(at,...,ak)

wt+k
j,Xt

(4.5)

We perform this optimization in a model predictive control fashion [57], where we find the optimal

sequence of actions at time step t, and execute at. We then replan for a k time-step horizon at the

next time step running the same optimization.

Other Tasks. In this work, we only demonstrate how to leverage the predator-prey graph for

inference and optimization for the task of becoming the dominant predator in a chain-structured

predator-prey group. However, like the leader-follower graph, we emphasize that the predator-prey

graph is a general representation that can be combined with many other tasks as well, e.g., in

more complex settings where the relationship is not limited to a chain structure. For example, the

robot can help to protect another agent by identifying who its predators are and interfere with their

actions.

4.9 Experiments: Leading and Following

We first evaluate our framework in the leader and follower domain. Through our experiments,

we demonstrate the efficacy of the leader-follower graph in representing the agents and further in

enabling better planning and optimization for the robot actions.

We evaluate our LFG on three different tasks that involve influencing multiagent human teams.

For each task, we compare task performance of robot policies that use the LFG against robot

policies that do not have access to the LFG. Across all tasks, we find that robot policies that use the

leader-follower graph perform better, showing that our graph can easily be generalized to different

settings.

Task Setup. Our tasks take place in the pursuit-evasion domain. Within each task, we conduct

experiments with simulated human behavior. Humans move along a potential field as shown in

Eqn. (4.1), where there are two sources of attraction: the agent’s goal (ag) and the crowd center

(ac). We also specify weights associated with these attractions to be θg = 0.6 and θc = 0.4. In this

way, a simulated human would trade off between following the crowd and moving toward a target

goal.

In each iteration of the task, the initial position of agents and goals are randomized. For all of
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our experiments, game canvas is 500× 500. At every time step, the human can move 1 unit in one

of the four directions: up, down, left, right, or stay at its position. The robot’s action space is the

same but with larger move amount 5. We let the maximum game time limit be 1000.

Implementation Detail. We simulated 5000 games of each possible configuration, totaling 15000

games for the two-player setting (as shown in Fig. 4.7) and 35000 for the three-player setting. Each

game stored the position of each agent and goal at all timesteps. Before training, we pre-processed

the data by normalizing it, shifting it to have a zero-centered mean, and down-sampled it. Each

game was then fed into our network as a sequence. Based on our experiments, hyperparameters that

worked well for our training were a batch size of 250, learning rate of 0.0001 and hidden dimension

size of 64. In addition, we used gradient clipping and layer normalization [13] to stabilize gradient

updates.

4.9.1 Reversing a Leader Follower Relationship

We evaluate a robot’s ability to change an edge of a leader-follower graph. In this task, the end

goal of the robot is not to affect the environment as some of the other tasks we describe below

(e.g., influence humans toward a particular goal). Instead, this experiment serves as a preliminary

to others where we evaluate how well a robot is able to manipulate the leader-follower graph.

Methods. Given a human agent i who is predisposed to following a goal with weights θg = 0.6,

θc = 0.4, we created a robot policy that encouraged the human agent to follow the robot r instead.

The robot optimized for the probability wi,r that it would become agent i’s leader.

Metrics. We evaluated the performance of the robot based on the leadership scores, i.e., probabil-

ities wi,r, computed by the leader-follower graph.

Results. We show that the robot can influence a human agent to follow it. Fig. 4.12 contains

averaged probabilities over ten tasks. The probability of the robot being the human agent’s leader

wi,r increases over time, and averages to 73%, represented by the orange dashed line. Our ap-

proach performs well compared to the random method, which has an average performance of 26%,

represented by the grey dashed line.

4.9.2 Adversarial Task: Distracting a Team

We now consider a task where the robot is an adversary that is trying to distract a team of humans

from reaching a goal.

In this task, there are m goals and n players in the pursuit-evasion game. Among the n players,

we have 1 robot agent and n− 1 homogeneous human agents. n− 2 human agents must collide with

a goal at the same time to capture it, allowing 1 human to be absent. The game ends if all goals

are captured or the game time exceeds the limit.
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Figure 4.12: Probabilities of a human agent following the robot over 10 tasks. The robot is success-
fully able to become the human agent’s leader as the task progresses.

Table 4.2: Average game time over 50 adversarial games with varying number of players

number of goals (m=2)

Model n=3 n=4 n=5 n=6

LFG Closest Pursuer (ours) 233.04±51.82 305.08±49.48 461.18±55.73 550.88±51.67
LFG Influential Pursuer (ours) 201.94±45.15 286.44±48.54 414.78±50.98 515.92±48.80

Random 129.2±32.66 209.40±39.86 388.92±53.24 437.16±43.17
To One pursuer 215.04±50.00 231.42±44.69 455.16±58.35 472.36±49.75
To Farthest Goal 132.84±34.22 198.5±36.14 382.08±52.59 445.64±46.77

The adversarial robot’s goal is to intentionally distract a team of human players so that they

cannot converge to the same goal quickly and thus extending the game time. Note that simply

blocking a single agent’s way would not be a desirable solution, since we allow for an agent to be

absent when capturing the goal.

Methods. We test our optimization methods based on the constructed leader-follower graph along

with other baseline models.

We experimented with 3 baseline strategies without knowledge of LFG. In the Random strategy,

the robot picks an action at each time step with uniform probability. To One Pursuer strategy is

that the robot agent selects a random human agent and then goes towards it trying to block its

way. The To Farthest Goal strategy selects the goal that the average distance to human players

are largest and then goes to that goal in the hope that human agents would get influenced or may

further change their goal by observing that some players are heading for another goal.

We also experimented with two optimization models based on the LFG. LFG Closest Pursuer

involves the robot selecting the closest pursuer and choosing an action to maximize the probability

of the pursuer following it (as predicted by the LFG). Similarly, LFG Influential Pursuer strategy

involves the robot targeting the most influential human agent predicted by the LFG described in

Sec. 4.5 and then conducting the same optimization of maximizing the following probability, as

shown in Eqn. (4.4).

Metrics. We evaluated the performance of the robot with game time as metric. Longer game time
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Table 4.3: Average game time over 50 adversarial games with varying number of goals

number of players (n=4)

Model m=1 m=2 m=3 m=4

LFG Closest Pursuer (ours) 210.94±33.23 305.08±49.48 289.22±52.99 343.00±55.90
LFG Influential Pursuer (ours) 239.04±39.73 286.44±48.54 219.56±41.00 301.80±52.00

Random 155.94±21.42 209.40±39.86 205.74±43.05 294.62±54.01
To One Pursuer 123.58±9.56 231.42±44.69 225.52±41.47 317.92±54.75
to Farthest Goal 213.36±34.83 198.5±36.14 218.68±43.67 258.30±50.64

indicates that the robot does well in distracting human players.

Results. We conduct experiments with different game settings by varying n (number of players)

and m (number of goals). For each specified game setting, we run the same 50 randomly initialized

games for different robot strategy and compute the mean and standard deviation for game time

over the 50 games. Across all the game settings we experimented with, our models based on LFG

consistently outperforms methods without knowledge of LFG. The experimental results with varying

number of players are summarized in Table 4.2. We also visualized the results of Table 4.2 in Fig.

4.13.

As shown in Fig. 4.13, average game time goes up as the number of players increases. This is

because it is more challenging for more players to reach agreement on which goal to capture and

thus takes longer time. The consistent advantageous performance suggests the effectiveness of LFG

for inference and optimization in this scenario.

LFG Influential PursuerLFG Closest Pursuer

Random To One Pursuer To Farthest Goal

Figure 4.13: Visualization of results in Table 4.2 For adversarial task, average game time over 50
games with 2 goals (as in Fig. 4.11) with different number of players across all baseline methods
and our model.

To demonstrate robot behavior in the adversarial game, we also took snapshots of one game as

in Fig. 4.11. Player 1 and player 2 started very close to goal g1 and thus it’s very easy for them to
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Figure 4.14: Collaborative game snapshots for a 60 second horizon. The orange circles are human
agents. The robot moves towards agent 3 in order to help all the agents converge on g1.

capture it. The robot approached agent 2 and tried to block its way, leading it to another goal g2.

In this way, the robot successfully extended the game time.

4.9.3 Cooperative Task: Leading a Team toward the Optimal Goal

Finally, we evaluate the robot in a cooperative setting where the robot tries to be helpful for human

teams. The goal of the robot is to lead its teammates so that everyone can reach the target goal that

gives the team the largest joint reward g∗ ∈ G. g∗ is not immediately observable to all teammates.

We assume a setting where only the robot knows where g∗ is (e.g. due to its better sensing capabilities

as in Fig. 4.1).

The experiment setting is the same as the Adversarial Task where n− 2 human agents need to

collide with a goal to capture it. In this scenario, the task is considered successfully completed if the

goal with the largest joint reward g∗ is captured, and it is considered failed if any other suboptimal

goal is captured or the game time exceeds the maximum limit.

Methods. Similar to the case in Adversarial Task, we explore two models where the robot chooses

to influence its closest human agent or the most influential agent predicted by the LFG. Different

from the Adversarial Task, here, the robot is optimizing the probability of the target agent following

itself and the probability of them going to the desired goal.

We also experimented with three baseline methods. Random strategy is taking random actions.

To Target Goal strategy is that the robot agent goes directly to the optimal goal g∗ and then stays

there trying to attract other human agents. To Goal Farthest Player strategy is that the robot goes

to the player that is farthest away from g∗ in the hope that it can influence the target back to g∗.

Metrics. We evaluated the performance of the robot strategy using the game success rate over 100

games.

Results. We experimented with varying number of goals and the results are summarized in Ta-

ble 4.4. In this scenario, going directly to the desired goal is a very strong method since it already
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conveys the message to other players that the robot is going for a specific goal. This method is espe-

cially effective when the game is not complex, i.e., the number of goals is small. However, our model

based on the LFG still demonstrates competitive performance compared to it. Specially when the

number of goal increases, the advantage of LFG gradually becomes dominant. This indicates that,

in complex scenarios, brute force methods that do not have knowledge of human team hidden struc-

ture do not suffice. High-level understanding of human teams are necessary for better human-robot

teaming in complex systems. Another thing to note is that the difference between all of the methods

becomes smaller as the number of goals increases. This is because the game difficulty increases for

all methods, and thus whether a game would succeed depends more on the game’s initial conditions.

We took snapshots of one game as in Fig. 4.14. In this game, the robot approaches other agents

Table 4.4: Success rate over 100 collaborative games with varying number of goals m.

number of players (n=4)

Model m=2 m=3 m=4 m=5 m=6

LFG Closest Pursuer 0.59 0.38 0.29 0.27 0.22
LFG Influential Pursuer 0.57 0.36 0.32 0.24 0.19

Random 0.55 0.35 0.24 0.21 0.20
To Target Goal 0.60 0.42 0.28 0.24 0.21

To Goal Farthest Player 0.47 0.29 0.17 0.19 0.21

and the desired goal in the collaborative pattern, trying to help catch the goal g1.

1

2

3

t = 0 t = 2 t = 4 t = 6

3
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2

2
1

3
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1

3
(a) (b) (c) (d)

Figure 4.15: Predator-prey game snapshots. The different colored circles represent agents in different
teams. (a) Agents follow a chain structure in the predator-prey game. (b) As agent 2 attempts to
capture agent 3, agent 1 intervenes and attempts to capture agent 2. (c) Agent 2 flees. (d) Agent 2
attempts to capture agent 3 again.
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4.10 Experiments: Predator-Prey

We next evaluate our framework in the predator-prey domain. We investigate whether our robot

can utilize the predator-prey graph to insert itself into the game as the top predator.

Task Setup. We evaluate our approach with both simulated and real human agents in the modified

pursuit evasion environment. In all of our experiments, agents follow a chain structure as shown

in Fig. 4.15. We reference each (simulated and real) human agent by their ids 1 . . . n, where n is

the number of human agents. Each agent is instructed to capture the agent above it and run away

from the agent below it. Thus agent 1 will always be the top predator and agent n will be the

bottom-most prey. The robot’s task is to join the game and become the top predator, i.e., capture

agent 1.

An example of a 4 player game is shown in Fig. 4.15. Agent 1 is the top predator that tries to

capture agent 2. Agent 2 aims to capture agent 3 but also tries to avoid being captured by agent

1. Agent 3 is at the bottom of the predator-prey chain and simply tries to avoid being captured.

The robot joins and tries to become the top predator by capturing agent 1. Importantly, we do not

inform the robot that its goal is to capture agent 1. The robot has to figure this out by relying on

the learned graph structure. Similarly, we also do not explicitly inform the other agents about the

robot’s goal, i.e. the other agents will treat the robot neither as its predator nor prey.

The initial position of all agents are randomized. Our experiments are conducted on a canvas of

size 500 x 500. At each time step, each agent can move 3 units in one of the cardinal directions or

choose to stay in place.

Methods. In order to become the dominant predator, the robot first identifies the top predator.

It then optimizes for the probability that it becomes that agent’s predator, as described in Sec. 4.8.

We compare against two methods with our predator-prey graph: a random agent (Random) and

an agent that optimizes for moving towards the center of the other three agents (Center). Center

encourages the robot agent to stay closer to the group without knowing which agent is the top

predator. By including the Center method, we hope to verify that the robot is actually following

agent 1 and not following other agents.

Metrics. We evaluated the performance of the robot based on the average number of time steps

that the robot agent is in collision with agent 2. Longer collision time indicates that the robot

performs well by capturing the top predator among the other agents.

Results with Simulated Humans. We conduct experiments with different settings by varying the

number of agents. For each specified game setting, we run the same 100 randomly initialized games

and compute the mean and standard error for the time the robot agent is capturing the top predator.

The experimental results are summarized in Fig. 4.16. Across all the settings, the predator-prey

graph that our method used was trained only with three-player data. We leverage this graph to

optimize robot behavior in various multi-agent games. We can see that our method captures prey
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for a longer amount of time compared to both Random and Center methods in the three-agent and

four-agent settings. When the number of agents gets larger, e.g. when we have five agents, the

performance degrades. This is because as the number of agents increases, the task becomes more

challenging and correspondingly, the predator-prey generalization error also accumulates both in the

inference and the optimization process.
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Figure 4.16: Average time the robot agent capturing (in collision with) the top predator over 100
games with varying number of agents.

Results with Human Participants. To evaluate the effectiveness of our framework against real

human users, We recruited human participants to play 3 player and 4 player versions of the game.

We conducted 6 games with different groups of participants. Each group played the game three times

with a robot following our algorithm as well as the Center and Random methods in a randomized

order. Results are shown in Table 4.5.

In the 3 player setting, we report the mean time the robot and agent 1 were in collision with their

prey as well as the ratio of the two means. We do not report agent 2’s score because they had no

assigned prey. The ratio highlights the effectiveness of the robot over the other human predator, and

thus acts as a good metric for assessing the robot policy. Looking at the results, our method achieves

a higher ratio than Random demonstrating the effectiveness of the robot policy when interacting

with real humans. In 3 player settings, Center places the robot in between the two human agents,

making it impossible for agent 1 to capture agent 2 without being captured by the robot. This

makes the robot’s job as a predator trivial. Center is therefore a special case of the 3 player setting.

In practice, this often leads to stalemates where all agents remained far apart from each other, as

shown by agent 1’s 0 mean in Table 4.5. However, in two out of the six games, agent 1 came close

enough to the robot, which explains the robot’s large average and standard deviation for Center.

In the 4 player setting, we report the mean time the robot were in collision with their prey. With
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larger number of agents, our method demonstrates its advantage of capturing the group structure

more and achieves highest performance. Compared to the special case in 3 player settings, the

crowd’s center was less correlated with its prey’s position and thus Center demonstrates inferior

performance compared to our method.

Table 4.5: Average number of time steps an agent is in collision with its prey over 6 games with 2
and 3 human participants.

Game Agent Ours Center Random

3 player game Robot 229.67 ± 164.4 657.44 ± 1365.04 103.78 ± 100.94
Human Agent 1 132.17 ± 265.9 0 438.89.83 ± 858.63

Robot/Human Agent 1 1.74 N/A 0.24
4 player game Robot 230.83 ± 93.32 136.64± 102.26 7.13 ± 44.59

4.11 Conclusion and Discussion

Summary. We propose an approach for modeling group behavior in multi-agent human teams. We

use a combination of data-driven and graph-theoretic techniques to learn a graph-based representa-

tion for leading-following and predator-prey dynamics. This graph representation encoding human

team hidden structure is scalable with the team size (number of agents) since we base the model on

local, pairwise relationship prediction and combine them to create a global model. We demonstrate

the effectiveness of our graph structure by testing optimization-based robot policies that leverage

the graph to influence human teams in different scenarios. Our policies are general and perform well

across all tasks compared to other high-performing task-specific policies.

There are several ways in which our framework can be applied to more complex real-world

settings. First, we can extend our approach to partially observable settings. When human agent po-

sitions are partially observable (i.e., the robot can only access the positions of its nearest neighbors),

our framework can still be applied locally. For instance, the robot can determine local leader-follower

structures that can be updated as the robot moves around and gathers more information.

We include preliminary results on what running our framework on real robots might look like in

Fig. 4.17. We use Zooids robots for our experiment, which is a collection of custom-designed wheeled

micro tabletop robots and can be used for various tasks including swarm drawing, interactive swarm

visualization [102]. Users control the movement of Zooids through a GUI on computers by dragging

the zooids icons to the intended moving directions from the interface. The video can be found here:

https://youtu.be/6t_IfJ82EvE. One robot (highlighted in blue) was controlled by our framework

and the rest were controlled by human users. In this cooperative task, the team would only receive

reward if all agents go to the same goal within the maximum game time limit. There are two goals

in the game, goal 1 in the bottom right and goal 2 in the upper left as shown in Fig. 4.17. The robot

agent knows that goal 1 has largest reward and tries to lead the team towards the optimal goal.

https://youtu.be/6t_IfJ82EvE
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Figure 4.17: (a) The Zooids robots. (b) Cooperative Zooids robot game snapshots for a 25 second
horizon. The highlighted blue robot is controlled by our framework, the rest were controlled by
human users. There are two goals in the game, goal 1 in the bottom right and goal 2 in the upper
left. The robot tries to aggressively to lead the human team towards the more optimal goal 1.

Limitations and Future Work. We view our work as a first step into modeling latent, dynamic

human team structures. Although our framework is general to different group dynamics and can

scale to various team sizes, we do recognize that the performance degrades when the task complexity

increases. Examples include when the number of goals or number of agents becomes too large, as

shown in Fig. 4.16. We observe that when increasing the number of agents, the assumption that

group dynamics can be explained through local pairwise interactions weakens due to the complexity

of interactions. For instance, when we recruited 5 humans to play the predator-prey game, “alliances“

emerged where agents that were non-adjacent in the predator-prey chain would team up. These

types of dynamics were not observed in two-player games. These types of scenarios are challenging

for our models, and the prediction error also accumulates both in the inference process and the

optimization process. Further exploration in these complex scenarios is needed to enable our model

to be self-aware and corrective.

Another limitation is the reliance on simulated human behavior to test our framework. Further

experiments with large-scale human data are needed to support our framework’s effectiveness for

understanding of noisier human behavior.

Finally, the robot policies that use the graph representation are fairly simple. Although this may

be a limitation, it is also promising that simple policies were able to perform well using the proposed

graph structures.

For future work, we plan to test our model on large scale human-robot experiments in both

simulation and on real robot platforms. Specifically, we plan on using navigation platforms of robot

swarms to further improve our model’s generalization capacity. We also plan on experimenting with
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combining the graph representation with more advanced policy learning methods such as reinforce-

ment learning. We think our graph representation could contribute to multi-agent reinforcement

learning in various ways such as reward design and more effective state representation.
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Chapter 5

Learning from My Partner’s

Actions: Roles in Decentralized

Robot Teams

5.1 Introduction

When teams of robots are deployed in our homes, warehouses, and roads, often these robots must

collaborate to accomplish their task. Imagine two robots working together to move a heavy table

across a room (see Fig. 5.1). Due to occlusions, each agent can only see some of the obstacles within

this room. Thus, the robots need to communicate to inform their partner about the obstacles

they see. One option is for the robots to explicitly communicate by directly sending and receiving

messages: i.e., we could tell our teammate where the obstacles are. But humans utilize more than

just explicit communication—we also implicitly communicate through our actions. For example,

if our partner guides the table away from our intended trajectory, we might infer that we were

moving towards an obstacle, and that there is a better path to follow. Collaborative robot teams—

like humans—should also leverage the information contained within their partner’s actions to learn

about the world.

Unfortunately, interpreting the meaning behind an action is hard. Robots can take actions

for many different reasons: to exploit what they know, convey information to their partner, elicit

information from their partner, or explore the environment. So when we observe our partner applying

some force to the table, what (if anything) should we learn from that action? And how do we select

actions that our partner can also interpret? In this chapter, we show that assigning roles alleviates

these challenges:

66
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Teams of robots can correctly interpret and learn from each other’s actions when the team is

separated into roles, and each role provides the robots with a distinct reason for acting.

Returning to our example, imagine that our partner’s role is to exploit their current information:

they move the table towards the goal while avoiding the obstacles that they can observe. If we

know this role, we can now interpret their actions: when our partner applies an unexpected force,

it must be because of some obstacle that we did not see. Hence, assigning roles enables us to learn

from our partner’s actions and update our estimate of the system state naturally, without requiring

additional, explicit communication. In this chapter, we make the following contributions:

Roles in Two-Player Teams. We focus on decentralized two-player teams where each agent

sees part of the current state, and together the agents observe the entire state. We show that—

without roles—the agent policies are interdependent, and interpreting the actions of our partner leads

to infinite recursion (what do you think I think you think, etc.). To remove this interdependence and

reach interpretable actions, we introduce two classes of policies: a speaker role, where agents exploit

what they know, and a listener role, where agents learn by modeling their partner as a speaker.

Mimicking Explicit Communication. We explore how roles can be used to make our decen-

tralized team behave like a centralized team that communicates explicitly. We find that decentralized

teammates which alternate between roles can match the centralized team, but if the agents always

maintain the same roles, the team may become unstable. We also reveal that speakers trade-off

between stochasticity and communication: to improve overall team performance, speakers should

choose more deterministic actions than the centralized policy to clearly convey their observations.

Comparing Implicit to Explicit. We implement roles both in a simulated game and a two-

robot manipulation task. Our simulations compare implicitly communicating through actions to

explicitly communicating by sending messages, and demonstrate that—when robots leverage roles—

implicit communication is almost as effective as explicit communication. In robot experiments,

teams that alternated roles successfully communicate their observations and collaborate to avoid

obstacles.

Overall, this work is a step towards learning from our partner’s actions in decentralized robot

teams.

5.2 Related Work

Multi-Agent Teams. Teams of robots have performed tasks such as localization [150], navigation

[12], and manipulation [173, 174]. While many works still rely on centralized coordination [29],

decentralized multi-agent teams are receiving increasing attention [41, 12]. Within decentralized

control, the problem is reformulated as a decentralized partially-observable Markov decision pro-

cess (Dec-POMDP) [6, 22] or coordinator-POMDP [135]. In practice, solving these optimization

problems is frequently intractable: related works instead rely on high-level abstractions [7], sparse
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Figure 5.1: (Left) Our problem setting, where two robots must work together to complete a task.
Each robot observes different parts of the true system state. (Right) Unlike centralized teams,
decentralized teammates should implicitly communicate through actions: here each agent sees
one obstacle, and tries to infer where the other obstacle is based on their partner’s actions. Inter-
preting our partner’s actions is hard: there are many reasons why an agent might choose an action.
We introduce speaker and listener roles so that each agent has a distinct reason for acting, enabling
the robots to learn from and implicitly communicate through their actions.

interactions between agents [129], specific problem instances [182], or control approximations [41].

Alternatively, with multi-agent reinforcement learning (MARL), agents can learn decentralized poli-

cies from trial-and-error [32]. Today’s MARL approaches often leverage actor-critic methods to scale

to high dimension state-action spaces [121, 69, 56]; however, these methods require offline, central-

ized training, and must deal with the credit assignment problem (i.e., who is contributing to the

team’s success?).

Communication. Across both control and learning approaches, communication between agents

is key to effective collaboration. The protocol that the agents use to communicate can be either

based on pre-defined triggers [170, 92] or learned from training data [180, 55, 148]. But the method

that the agents use to communicate is generally explicit : the agents have a separate channel with

which they directly broadcast and receive messages from their teammates [196]. Unlike these recent

works, we will focus on leveraging implicit communication through actions.

Roles in Human Teams. Our research is inspired by human-human teams, where different

roles naturally emerge in collaborative tasks [133, 74]. For example, when two humans are working

together to physically manipulate an object, the agents can identify and assume complementary

roles based on their partner’s force feedback alone [155]. Roles have also been applied to human-

robot interaction: here the robot dynamically adjusts its level of autonomy (i.e., becomes a leader

or follower) in response to the force feedback from the human partner [130, 117, 73]. We will extend

these ideas to robot-robot teams, where we believe that roles can similarly improve collaboration.

5.3 Interpreting Actions via Roles

Consider a decentralized, two-agent team where the agents share a common objective. Each agent

observes part of the system state. To make good decisions, both agents need an accurate estimate

of the entire state; for instance, we need to know whether there is an obstacle behind us, if there

is free space to our right, etc. While we know the aspects of the state that we directly observe,

how can we estimate the parts of the system state that our partner sees? One natural solution is to
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learn about the environment based on the implicit communication contained within our partner’s

actions. In this section, we show that correctly interpreting the meaning behind our partner’s actions

is challenging when both agents try to learn from their partner and exploit what they observe at

the same time. Returning to the table moving example: when our partner applies a force, is this

because of what they have learned from our own actions, because of an obstacle behind us, or some

combination of both? To correctly infer the unobserved state, each agent must reason over their

partner’s behavior, and this behavior may in turn depend on the first agent’s actions. Accordingly,

we here introduce speaker and listener roles to remove this interdependency: the speaker implicitly

communicates relevant parts of the state that they observe to the listener, who learns a more accurate

state estimate.

Two-Agent Team. We formulate our two-player team as a decentralized Markov decision

process (Dec-MDP) [6]. Let the state space be S = S1×S2 and let the action space be A = A1×A2,

where Si and Ai are the state and action space for agent i. The team has dynamics T : S×A×S →
[0, 1] and receives reward R : S × A → R. At the current timestep t, agent i observes its own state

component sti, and collectively the team observes st = (st1, s
t
2). We therefore have that the state is

jointly fully observable: st is known given the current observations of both agents, st1 and st2. When

making decisions, agent i has access to its history of observations, s0:ti = (s0i , s
1
i , . . . , s

t
i), as well as the

history of actions taken by both agents, a0:t−1. For simplicity, we assume that each agent observes its

partner’s current action selection (our results still hold if they observe the previous action). Hence,

the agents have policies of the form π1(a
t
1 | s0:t1 , a0:t−1, at2) and π2(a

t
2 | s0:t2 , a0:t−1, at1).

Mimicking Centralized Teams. One approach to control decentralized teams is solving this

Dec-MDP; however, the problem is NEXP-complete [22], and often intractable for continuous state

and action spaces. We study a different approach: we find policies for both decentralized agents

to collectively mimic the behavior of a centralized team [46, 148]. Imagine that—when moving

a table—both teammates know exactly what their partner sees; when we explicitly communicate

our observations, we can solve the problem together, and collaborate perfectly to carry the table.

We will treat this centralized policy that uses explicit communication as the gold standard for

our decentralized team, while recognizing that the decentralized team only has access to implicit

communication, and may not be able to completely match the centralized team. Importantly, the

optimal centralized policy is the solution to an MDP, and can be tractable computed offline (P-

complete) [22].

Interdependent Policies. Let the centralized policies be π∗
1(a

t
1 | st1, st2) and π∗

2(a
t
2 | st1, st2).

When both decentralized agents choose their actions to best mimic this centralized behavior, we



CHAPTER 5. LEARNING FROM MY PARTNER’S ACTIONS 70

reach:

π1(a
t
1 | s0:t1 , a0:t−1, at2) ∝

∑
s0:t2

π∗
1(a

t
1 | st1, st2) · π2(a

t
2 | s0:t2 , a0:t−1, at1) · P (s0:t2 | s0:t1 , a0:t−1)

π2(a
t
2 | s0:t2 , a0:t−1, at1) ∝

∑
s0:t1

π∗
2(a

t
2 | st1, st2) · π1(a

t
1 | s0:t1 , a0:t−1, at2) · P (s0:t1 | s0:t2 , a0:t−1)

(5.1)

See the appendix for our complete derivation. We cannot solve Eqn. (5.1) as is because the policies

are interdependent: π1 and π2 both appear in each other’s policy, so that solving for π1 requires

solving π2 for all possible s0:t2 , which requires an inner loop that solves for π1 over all possible s0:t1 ,

and so on. Going back to our table example: imagine that our partner observes whether there is

an obstacle behind us, and we want to infer the likelihood of this obstacle from their actions. This

is easy when our partner’s actions are only based on this obstacle—but if our partner’s behavior is

also a response to our own actions, how to we know which aspects of our partner’s behavior to learn

from? To break this interdependence and recover interpretable actions, we separate our team into

two roles: an agent that exploits what it observes (the speaker), and an agent that learns from its

partner’s (the listener).

Speaker. A speaker is an agent that makes decisions by purely exploiting their observations

s0:ti . Let Agent 1 be the speaker; the speaker policy that best matches π∗
1 is:

π1(a
t
1 | s0:t1 ) =

∑
s2

π∗
1(a

t
1 | st1, st2) · P (st2 | s0:t1 ) (5.2)

More generally, any policy of the form πi(a
t
i | s0:ti ) is a speaker. Because speakers react to their

observations, these actions convey information about the parts of the state they see to their team-

mates.

Listener. A listener makes decisions based on its own observations while also learning an

improved state estimate from its partner’s behavior. If Agent 2 is the listener, the policy that

matches π∗
2 is:

π2(a
t
2 | s0:t2 , a0:t−1, at1) ∝

∑
s0:t1

π∗
2(a

t
2 | st1, st2) · π1(a

t
1 | s0:t1 ) · P (s0:t1 | s0:t2 , a0:t−1) (5.3)

Compared to (5.1), now the listener models its partner as a speaker, and solving for π1 (the speaker

policy) does not depend on π2 (the listener policy). More generally, we consider any policy of the

form πi(a
t
i | s0:ti , a0:t−1, atj) as a listener if it interprets its teammate’s actions with πj(a

t
j | s0:tj ).
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5.4 Leveraging Roles Effectively

Now that we have defined roles, let us return to our table carrying example. Imagine that we are

the speaker and our partner is the listener: what is the best speaker policy for us to follow? Should

we always remain a speaker, or do we need to switch speaker and listener roles with our teammate?

And if our decentralized team uses roles, when can we fully match the behavior of a centralized

team? In this section we explore these questions, and analyze how roles operate within simplified

settings.

5.4.1 When Can We Use Roles to Match a Centralized Team?

Roles enable implicit communication through actions. This implicit communication is typically less

informative than explicitly sharing observations; but when an agent’s actions can completely convey

their observed state, robots can leverage roles to fully match the behavior of a centralized team:

Theorem 1. If there exist surjective functions g1 : A1 → S1 and g2 : A2 → S2, a decentralized team

using speaker and listener roles can match the optimal actions of a centralized team.

Proof. The decentralized team matches the centralized team’s performance by communicating with

actions while rapidly alternating between speaker and listener roles. Define a∗1 as the optimal

centralized action for agent 1, and let ā1 be a naive action that completely conveys what agent

1 observes: g1(ā1) = s1. We choose the speaker action to be ā1 and the listener action to be

a∗2 + (a∗2 − ā2), where the listener can compute a∗2 because it observes s2 and infers s1 from g1(ā1).

The agents change roles: agent 1 is the speaker for time [t, t + dt) and agent 2 is the speaker for

time [t+ dt, t+2dt). Taking the limit as dt→ 0 (i.e., as the roles change infinitely fast), the team’s

action a becomes:

at = lim
dt→0

at + at+dt

2
= lim

dt→0

1

2

([
āt1

a∗t2 + (a∗t2 − ā2
t)

]
+

[
a∗t+dt
1 + (a∗t+dt

1 − āt+dt
1 )

āt+dt
2

])
= a∗t

and so the decentralized team’s action converges to the optimal action of the centralized team.

Intuitively, consider the table example with two dynamic obstacles, one of which is observed by

each teammate. When we are the speaker, we apply a force with a direction and magnitude that

conveys our obstacle’s position to the partner; likewise, when our partner is the speaker, their action

informs us where their obstacle is. By quickly switching speaker and listener roles we can both

understand the state, and match the behavior of a team that explicitly tells one another about the

obstacles.
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5.4.2 Analyzing Roles in Linear Feedback Systems

To better understand how roles affect decentralized teams, we specifically focus on teams controlled

using linear feedback. Here the centralized policy is a∗ = −K∗s, where K∗ is the desired control

gain; for instance, this policy could be the solution to a linear-quadratic regulator (LQR). Assuming

our decentralized team is similarly controlled with a = −Ks, we first determine whether alternating

speaker and listener roles is necessary to ensure system stability. We next consider situations where

the centralized policy includes stochastic behavior, and we identify how speakers should optimally

trade-off between mimicking this desired noise and effectively communicating with the listener.

Do We Need to Change Roles? Imagine that we are the speaker within the table-carrying

example. In the best case, our actions completely convey our observations to our partner. But if we

are never a listener, we never know what our partner observes; and, if the team’s behavior depends

on our own actions, this can lead to situations where we are unable to collaboratively accomplish

the task:

Proposition 1. If the teammates never change speaker and follower roles, and the team is attempt-

ing to mimic a centralized controller a∗ = −K∗s, there exist controllable system dynamics for which

the decentralized team a = −Ks becomes unstable for any choice of K.

Proof. We prove this by example. Let agent 1 always be the speaker and let agent 2 be the listener.

Consider the following controllable system with linear dynamics ṡ = As+Ba, where a = −Ks:[
ṡ1

ṡ2

]
=

[
1 1

0 1

][
s1

s2

]
−

[
0 0

1 0

][
K11 0

K21 K22

][
s1

s2

]
(5.4)

Note that K12 = 0; this is because the speaker makes decisions based purely on their own state, s1.

The listener is able to perfectly infer s1 since it observes the speaker’s action a1, and s1 = −K−1
11 a1.

For this team to have stable dynamics the eigenvalues of A−BK must have a strictly negative real

part. But here the eigenvalues are: 1±
√
−K11. Hence, no matter what speaker and listener gains

K11, K21, and K22 we choose, the decentralized team becomes unstable.

How Should We Speak and Listen with Noise? Returning to our table carrying example,

we now know that we should alternate speaker and listener roles even when our actions completely

convey our observations. But what if we cannot perfectly measure the actions of our partner? For

instance, imagine that instead of knowing exactly what force our teammate applies, we have a noisy

estimate. As long as this estimate is unbiased, we can still match the expected behavior of the

centralized team by treating these noisy actions as perfect measurements, and speaking or listening

normally:

Proposition 2. If the teammates incorrectly sense their partner’s action ai as ai + ni, where ni

is unbiased noise, the decentralized team can match the centralized controller action a∗ = −K∗s in
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expectation by speaking and listening as if ai + ni were the teammate’s true action.

Proof. Let agent 1 be the speaker, let agent 2 be the listener, and let the decentralized controller be

a = −Ks, where K is shown in Eqn. (5.4). The speaker takes action a1 = −K11s1, but the listener

measures a1 +n1, and infers the speaker’s state as ŝ1 = s1−K−1
11 n1. Accordingly, when the listener

acts based on ŝ1, their action has an additional term K21K
−1
11 n1. Next the agents switch roles, and

the first agent (i.e., the listener) acts with an additional term K12K
−1
22 n2. When the agents rapidly

alternate between speaker and listener roles, the team’s behavior includes these terms:

a = −K∗s+

[
K∗

12K
∗,−1
22 n2

K∗
21K

∗,−1
11 n1

]
, K∗ =

[
K∗

11 K∗
12

K∗
21 K∗

22

]
, En[a] = −K∗s = a∗ (5.5)

This matches the centralized team’s action in expectation if n1 and n2 are unbiased.

Noisy action measurements are undesirable but often unavoidable. Conversely, there are cases

where the centralized policy itself recommends stochastic actions: i.e., when an agent sees an obstacle

in front of it, it should go around on the right-side 30% of the time, and on the left otherwise. The

speaker and listener can choose whether or not to incorporate this stochasticity. Intuitively, we might

think that both the speaker and listener should match the optimal centralized policy; but, when the

speaker’s actions become more stochastic, it is harder for the listener to correctly interpret what the

speaker has observed. Imagine we are the listener: the more random the speaker’s action is, the less

information we have about what the speaker sees, which makes it more challenging for us to learn

the system state. This leads to a trade-off between speaker noise and overall team performance:

Proposition 3. If the centralized policy is stochastic, so that a∗ = −K∗s + n, and n is sampled

from a Gaussian distribution n ∼ N (0, diag(w2
1, w

2
2)), the speaker policy that minimizes the Kullback-

Leibler (KL) divergence between the decentralized and centralized policies has a variance less than

or equal to the corresponding variance of the centralized policy.

Proof. Let the first agent be the speaker and let the second agent be the listener. The decentralized

team takes action a = −Ks+m, where m ∼ N (0, diag(σ2
1 , σ

2
2)). We solve for the variances σ2

1 and

σ2
2 that minimize the KL divergence between the decentralized and centralized policies:

min
σ2
1 ,σ

2
2

KL
[
N
(
−Ks, diag(σ2

1 , σ
2
2)
)
, N

(
−K∗s, diag(w2

1, w
2
2)
)]

(5.6)

Selecting K to best match K∗, and taking the expectation of Eqn. (5.6), the optimal variances are:

σ2
1 =

K2
11w

2
1w

2
2

K2
11w

2
2 +K2

21w
2
1

≤ w2
1, σ2

2 = w2
2 (5.7)

See the Appendix Chapter A for our full derivation. Hence, while the listener should match the

variance of the corresponding centralized policy, the speaker should intentionally choose a variance
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Figure 5.2: Simulated task. (Left) Two agents collaborate to carry a rigid object while avoiding
obstacles. Each agent can only see the obstacles matching their color. In this example, the explicit
and dynamic roles teams are able to negotiate the obstacles to reach the goal, while the static
roles team fails. (Right) Example of implicit communication via actions: here the speaker sees an
obstacle, and abruptly moves to the right (1). The listener updates its state estimate based on this
unexpected motion, and also moves to avoid the unseen obstacle (2).

σ2
1 ≤ w2

1.

Summary. If two decentralized agents are collaborating with roles, they can match the behavior

of a centralized team when their actions completely convey their observations. But even in these

cases, alternating between speaker and listener roles is necessary; the team may become unstable

if their roles never change. When choosing how best to speak and listen, greedily mimicking the

centralized policy is effective, and robust to noisy, unbiased measurements of the partner’s actions.

In situations where the centralized policy is stochastic, however, a trade-off emerges: speakers should

select more deterministic actions in order to better convey their observations to the listener.

5.5 Experiments

Roles are sufficient when actions can completely convey the state an agent observes. But what about

more general situations, where the observation space has a higher dimension than the action space?

And how do our proposed roles function on actual robot teams? Here we explore these challenging

cases in a simulated game (see Fig. 5.2) and a two-robot manipulation task (see Fig. 5.4). We compare

fixed and dynamic role allocations to different amounts of explicit communication. Overall, we find

that there is a spectrum across explicit and implicit communication, and that implicit communication

via roles approaches the performance of equivalent explicit communication.

5.5.1 Simulated Table-Carrying Game with Implicit and Explicit Com-

munication

We simulated a continuous state-action task in which two point robots carried a table across a

plane (see Fig. 5.2). Each robot observed half of the obstacles within this plane, and so together
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Table 5.1: Success rate λ when both robots knew the geometry of the obstacles a priori, but not
their locations. Each agent implicitly communicated the positions of the obstacles that they could
see through their actions. Importantly, the agents could completely communicate the position of
the closest obstacle with their current action: hence, the success rate of explicit teams (not listed)
is almost identical to that of dynamic teams.

Roles (Dynamic) Roles (Static)

Obstacles T = 1 T = 4 T = 16 Speaker-Listener Speaker-Speaker

n = 2 0.995 0.914 0.827 0.872 0.757
n = 4 0.982 0.786 0.656 0.735 0.545
n = 8 0.924 0.586 0.434 0.539 0.305

the team needed to communicate to obtain an accurate state estimate. We compared using explicit

and implicit communication. During explicit communication, agents sent and received messages

that contained the exact location and geometry of the closest obstacle. By contrast, during implicit

communication the agents leveraged roles to learn from their partner’s actions. An example is shown

in Fig. 5.2: here the speaker sees an obstacle—that the listener cannot observe—and changes its

motion to implicitly indicate to the listener that there is an obstacle directly ahead.

Independent Variables. We varied the (a) communication strategy and (b) task complexity.

There were three levels of communication strategy: explicit, dynamic roles, and static roles. Within

explicit and dynamic roles, we also varied the number of timesteps T between communication;

i.e., the explicit teams could only send messages about the closest obstacle every T timesteps, or,

analogously, the speaker and listener roles alternated after T timesteps. In order to adjust the task

complexity, we increased n, the total number of obstacles in the environment.

Dependent Measures. Within each simulation, two agents held a rigid table, and tried to

carry that table to the goal without colliding with an obstacle. We measured the success rate (λ)

of reaching the goal over 1000 randomly generated environments. As a baseline, we also tested fully

centralized teams: these centralized teams reached the goal in all environments (λ = 1).

Hypotheses:

H 6. Dynamically alternating roles leads to better performance than fixed role allocations, even in

cases where actions can completely convey the location of the closest obstacle.

H 7. In environments where actions cannot completely convey the closest obstacle, dynamic role

allocations perform almost as well as explicitly communicating the closest obstacle.

H 8. Implicit communication via roles is robust to noisy action observations.

We provide additional details about this simulated game in the appendix and supplementary

code.

5.5.2 Rapidly Changing Roles Outperforms Static Roles

We first tested hypothesis H6 in a setting where each agent knew the geometry of all the obstacles

in the environment (i.e., all obstacles were circles with the same radius). Since the obstacle shape is
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known and fixed, agents could fully convey the closest obstacle’s (x, y) location through their 2-DoF

actions. Our results are shown in Table 5.1; we point out that dynamic roles and explicit are almost

the same in this case, and so we focus on comparing dynamic roles to static roles. For each tested

number of obstacles, the teams that rapidly alternated roles outperformed teams with fixed roles.

Indeed, when there are only n = 2 obstacles, the mapping from action space to observation space

was surjective, and the dynamic roles team converged towards λ = 1 as T → 0 (Theorem. 1). But

dynamically alternating roles was not always better: when the teammates changed roles too slowly

(T = 16), their performance was actually worse than maintaining a constant speaker and listener.

5.5.3 Implicitly Communicating via Roles Competes with Explicit Com-

munication

Next, we explored hypothesisH7 in more complex settings where the agent’s current action could not

completely convey what they observed to their partner. Here the robots did not know the obstacle

geometry a priori ; instead, each obstacle radius was randomly sampled from a uniform distribution.

Teams with roles had to try and implicitly communicate about both the obstacle location and

shape—by contrast, explicit teams could send messages to their partner that completely conveyed

the closest obstacle. Our findings are visualized in Fig. 5.3. We see a spectrum in performance

across explicit, dynamic roles, and static roles. Although directly sending obstacle information

is always better than learning from actions, implicitly communicating through dynamic roles is

almost as successful as explicitly communicating with our partner at the same time interval T . This

suggests that leveraging roles to learn from our partner’s actions can be nearly as effective as direct

communication, even in cases where the observations cannot be completely conveyed in a single

action.

5.5.4 Roles with Noisy Action Observations Match Noisy Messages Dur-

ing Explicit Communication

So far we have conducted simulations in settings where the agents can perfectly measure the com-

munication of their partner. Now we take a step back, and consider hypothesis H8 when the

communication channel itself is noisy. This encompasses scenarios where the partners cannot per-

fectly measure each other’s actions, or, analogously, when the explicit messages are corrupted. Our

results with zero mean Gaussian noise are listed in Table 5.2. As expected, including noise decreased

performance across both explicit and dynamic roles. But teams with dynamic roles that rapidly al-

ternated were still almost on par with explicit teams that communicated in realtime, demonstrating

that roles were as robust to noisy actions as explicit teams were to noisy messages. Similar to before,

fixed speaker-listener teams were more successful than teams that slowly alternated roles.
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Table 5.2: Success rate λ when the communication was noisy. We simulated zero-mean Gaussian
noise, and chose the variance so that the coefficient of variation was 0.1. Both explicit communication
(noisy messages) and implicit communication (noisy action observations) had the same noise ratio.
Dynamic roles performed almost on par with realtime explicit communication, where both agents
exchanged messages at every timestep.

Explicit Roles (Dynamic) Roles (Static)

Obstacles T = 0 T = 1 T = 4 T = 16 Speaker-Listener Speaker-Speaker

n = 2 0.925 0.884 0.818 0.787 0.829 0.757
n = 4 0.833 0.747 0.669 0.606 0.655 0.545
n = 8 0.553 0.512 0.416 0.357 0.398 0.305

5.5.5 Manipulation Experiments with Two Robot Arms

We implemented our dynamic role and static role strategies on two decentralized robot arms (Panda,

Franka Emika). Our experimental setup is shown in Fig. 5.4: the robots were controlled using

separate computers, and were tasked with placing a rod on the table top without any explicit

communication. In order to complete this task, the robots had to negotiate two obstacles—but,

like in our simulations, each robot could only see one of these obstacles. Because of their differing

knowledge about the system state, the robots originally had opposite plans about how to move the

rod to the table: one robot wanted to move the rod forwards (with respect to the camera), while

the other robot planned to move the rod backwards. We expect intelligent robots to recognize that

there is a reason why their partner disagrees with them, and learn from their partner’s actions in

realtime to update their estimate of the system state. We controlled the robots using static speaker-

speaker and speaker-listener roles, as well as dynamic roles that alternated every 0.5 s. During the

experiments, only the dynamic roles team inferred the obstacles that their partners observed, and

aligned their actions to successfully place the rod on the table (see Fig. 5.4). Please also refer to our

video submission.

5.6 Conclusion and Discussion

Summary. Decentralized robot teams should learn about what their partner observes based on their

partner’s actions, but this is not possible when both agents attempt to simultaneously exploit their

observations and communicate with their partner. We have therefore introduced separate speaker

and listener roles: our analysis shows that teammates which dynamically alternate roles theoretically

and experimentally approach the performance of teammates that can explicitly communicate.

Limitations and Future Work. This work is limited to Dec-MDPs, where the agents collectively

observe the full system state. But we recognize that often there are parts of the state that neither

agent can fully observe; accordingly, our future work will focus on extending roles to Dec-POMDPs.
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Figure 5.3: Success rate λ when the robots did not know the obstacle geometry a priori. Not only
was the observation space higher dimensional than the action space, but agents could not even convey
the closest obstacle’s position and radius in a single action. There is a spectrum in performance
across both communication type and frequency. For realtime explicit communication, the agents
fully convey the closest obstacle at every timestep.

Figure 5.4: Two decentralized robot arms tasked with placing a rod on the table while implicitly
communicating via roles: the left robot sees obstacle OL and the right robot sees OR. (Left) The
behavior of static role and dynamic role teams after t s. Both static role teams collided with obstacle
OL because they failed to mutually communicate their observations. The team that alternated roles
successfully reasoned over each other’s actions, conveyed the obstacle positions, and aligned their
actions. (Right) We plot the norm of the force the two agents exerted on one another, as well as the
alignment between the two agent’s end-effector movements.
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Chapter 6

Learning Tool Morphology for

Contact-Rich Manipulation Tasks

with Differentiable Simulation

6.1 Introduction

Humans are distinct from other species in that tool use is a defining and universal characteristic

for us [62]. This suggests that in the pursuit of equipping robots with human-like dexterity, tools

may play an important role. Robots are already using various tools in a range of contact-rich

manipulation tasks. For example, to make knots, robots can use a tri-needle to maintain the loop

[166]. For cooking, robots use spatulas to flip pancakes [186] and skewers to pick food for assistive

feeding [181, 65]. While tools greatly influence how robots interact with the environment in these

contact-rich tasks, most works focus on learning how to use existing tools. Little attention is paid

to optimal tool design. Rather than forcing robots to use pre-defined tools, we aim to intelligently

adapt the tools to the tasks, thus helping robots become more effective.

In this work, we aim to develop a general framework for learning robust tool morphology for

contact-rich tasks. Relevant to our setting, works on aerodynamic design [123] and vehicle component

design also tackle the problem of finding an optimal shape. However, these prior works do not focus

on tool design for contact-rich tasks and thus do not require complex contact modeling that is

necessary in our scenarios. Another relevant line of research investigates robot gripper design. Some

of these works aim to discover gripper designs for grasping a wide range of objects [198] or executing

re-orientation primitives [159]. However, they do not give a way to optimize the gripper shape for

more complex tasks. Another recent work [194] gives a way to optimize morphology for a given task

objective. However, as we will show in our experiments, it does not necessarily generalize to task

80
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Figure 6.1: We build an end-to-end framework for learning tool morphologies suitable for contact-
rich tasks. Our goal is to learn a tool morphology for a given scenario that is robust to task
variations. We achieve this with a method based on continual learning that trains on a sequence of
task variations.

variations, such as different initial object poses. Overall, we aim to automatically design tools for a

given task objective, such that these tools are robust to task variations.

To obtain an optimal shape that minimizes a task-relevant objective, previous work on gripper

design employed heuristics for guiding their search [64], or needed Monte Carlo estimation of the

gradients to attempt gradient-based optimization [167]. When a robot uses a tool in a contact-rich

manipulation task and knows the corresponding dynamics model, it is possible to directly get the

exact gradients by differentiation; this enables better numerical stability and faster convergence [42].

To this end, we leverage recent advances in differentiable physical simulators [76, 44, 194] and build

an end-to-end framework for learning tool morphology suitable for contact-rich tasks. To design an

effective tool for a specific scenario while maintaining ability to handle task variations, we optimize

the tool morphology over a distribution of task variations. This brings in two challenges. First,

the training process for learning to handle the entire distribution can be computationally expensive.

Second, due to the complex dynamics of contact-rich tasks, the underlying optimization landscape

is highly non-linear and rugged, which makes it more difficult for optimization to converge to a

good solution. To tackle these challenges, we propose an approach based on continual learning

that samples task variations and conducts optimization in a sequential manner. Our insight is to

re-interpret continual learning as robust optimization framework for problems with challenging loss

landscapes. Compared to prior work, we consider a wider range of tasks and objects, including

deformable objects, and achieve an improved task performance in simulation.

Furthermore, we demonstrate that the tools obtained with our approach are effective for helping

real robots complete the given tasks in reality.
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6.2 Related Work

Morphology Optimization in Manipulation. In this work, we explore the promise of fully

differentiable end-to-end optimization of tool morphology with the help of differentiable physics.

Gripper design is one related problem. Some classic works provide guidelines for manually designing

grippers guided by practical insights [33]. Recent works aim to learn an optimal design within a given

design space. Evolutionary strategies are employed in [127] to optimize both the robot morphology

and the controller. In [191], the authors optimize gripper quality using a set of manually designed

metrics. Another popular paradigm for gripper customization is imprint-based methods [168, 188].

However, these methods only produce customized finger geometry, where an object 3D model, grasp

pose, and task description are specified by the user. A survey in [79] reviews other examples of

automated finger design. Further recent examples include a gradient-free method [147], and a

gradient-based shape generation method with non-differentiable simulation for training [70]. Most

closely related to our work is DiffHand [194], where a differentiable simulator is developed to enable

co-design of robot morphology and control by optimizing task-specific objectives. However, this

work only considers specific object initial states, and thus does not learn a morphology that would

generalize over various initial object states.

Tool design is related to gripper design but unlike grippers and fingers, tools are typically not

rigidly attached to robots. This opens future possibilities to study a) re-grasping of tools to improve

versatility and dexterity of manipulation robots, and b) the use of multiple tools at the same time

(e.g. for dual-arm manipulation). While we do not focus on these aspects in our current work,

our formulation facilitates exploring them in the future. Works that consider selecting tools and

optimizing policies for tool use are common in robotics literature, e.g. [171, 184], where [184] employs

a differentiable simulator. However, the vast majority of these works do not optimize tool shape.

Related work for tool morphology optimization includes MacGyvering [132]. However, it assumes

access to a ‘reference tool’, and aims to construct a tool from a set of available parts. Instead,

we consider the problem of evolving tool morphology from an initial shape without assuming prior

knowledge about the optimal tool shape. Furthermore, we use end-to-end differentiable simulation,

and leverage differentiability at all levels of the optimization pipeline.

Differentiable Simulation. Instead of using heuristics or search algorithms for optimizing mor-

phology, we leverage differentiable simulation for directly obtaining analytical gradients with re-

spect to the final task objective. Differentiable simulators have been developed for rigid bodies

[194, 76, 190] and deformable objects [111, 134]. In this work, we adopt the differentiable simulator

and morphology representation from DiffHand [194]. However, our framework is agnostic to the

choice of differentiable simulator. Differentiable simulation already enabled some impressive results:

e.g. system identification (real-to-sim) and control optimization for cutting [75]; solving a dynamic

ball-in-cup task in 4 minutes on a real robot [122]. These works consider advanced phenomena, such
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as modeling deformation. However, they do not address the aspect that could be especially chal-

lenging for computing gradients – making and breaking contacts in contact-rich tasks. Contact-rich

scenarios bring a new level of complexity. They yield sharp changes in the loss landscapes and could

make gradient-based optimization difficult [179, 8]. Our focus on tool morphology requires us to

address this challenge because tools interact with objects in the scene. Hence, we propose a method

that not only employs differentiability, but also leverages a continual learning formulation of the

problem to tackle the optimization challenges that arise in contact-rich scenarios.

Continual Learning. Continual Learning considers the problem of learning to solve a sequence of

tasks (or task variations), with the objective to perform well on the current task without forgetting

what has been learned from previous tasks [45, 70, 104]. The tasks are usually provided as a stream,

i.e. data from previous tasks is usually not retained due to memory limitations. There are different

categories of continual learning methods. For example, replay methods [154, 115] usually store a

fixed number of samples in the replay buffer and use these to construct a distillation loss between

previous and current model predictions. This distillation loss encourages the model not to forget

what it previously learned. Parameter isolation methods [125, 169] divide model parameters into

different subsets and fix the subset of parameters learned with previous tasks when learning a new

task. In this way, they prevent the model from forgetting previous tasks and also improve the

training stability. We build upon these works and leverage the insight that continual learning could

be re-interpreted as a framework for robust optimization suitable for problems with non-smooth

dynamics that yield challenging loss landscapes, such as optimizing manipulation tool morphology.

6.3 End-to-end Framework with Differentiable Simulation

In this section, we describe how we learn tool morphology in an end-to-end manner. In Sec. 6.3.1,

we first formalize the task where the tool will be used. With the deformation based morphology

parameterization described in Sec. 6.3.2, we obtain a low-dimensional design space. Finally, we show

the end-to-end morphology parameter learning pipeline for a single task variation in Sec. 6.3.3.

6.3.1 Problem Statement

We formulate the overall manipulation task as a discrete-time Markov Decision Process (MDP)

with state space S, action space A, reward r, discount factor γ, and ρ0 as the distribution of the

initial state sss0: (S,A, Tθθθ, r, γ, ρ0). We parameterize the transition function Tθθθ(s, a) by θθθ, which

denotes a vector of tool morphology parameters as will be detailed in Sec. 6.3.2. Different tool

morphologies influence how the robot has to interact with an object to maximize reward. Imagine

we are pushing peas onto a scoop with a tool that has a simple rectangular shape. It is likely that

the peas will roll off to the side requiring the robot to re-orient the tool while pushing. However,

if the tool is shaped to have a concave recess in the center, the peas would be less likely to roll off
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Figure 6.2: An example of morphology parameter vector θθθ and shape deformation. Here, the
morphology is parameterized by θθθ = [θ1, θ2, θ3, θ4]

T , where θ1, . . . , θ4 represent the lengths of the
four segments highlighted in blue. Upon updating morphology parameters θθθ to θθθ′, we first get the
deformed cage vertices, then get the full mesh, as described by Eqn. (6.1).

and escape while being pushed. This illustrates that different θθθs yield different MDPs, since they

change the transition function Tθθθ(s, a). Our goal is to learn the optimal morphology parameters θθθ∗

that maximize the task reward when robot executes a control policy π. This framework is general

enough in principle to allow joint learning of morphologies and control policies. In practice, in this

work we focus on learning the tool morphology1. To be consistent with notation in the literature

on differentiable simulation, instead of reward maximization we describe the optimization problem

as loss minimization.

6.3.2 Morphology Parameterization using Cage-Based Deformation

Cage-based deformation techniques are a common tool for deforming meshes in graphics applications

[137] and has previously been used to learn optimal hand morphology in a robotics context [194].

We adopt the same morphology parametrization. Typically, a cage is a closed, low resolution mesh

that envelopes the high-resolution mesh of the object we want to deform. Given an initial meshM
of the object and the cage C around it, we use mi ∈M to denote the position of the ith mesh vertex,

and cj ∈ C to denote the position of the jth vertex in the cage. Cage-based defromation establishes a

linear mapping from the cage vertices cj ∈ C to each mesh point mi ∈M by computing deformation

weights wij defined by Eqn. (6.1) below:

mi =
∑

j,cj∈C
wijcj,

∑
j,cj∈C

wij = 1, ∀i,mi ∈M (6.1)

1In this work, we focus on morphology learning and regard policy learning as a separate line of work. However, our
framework is compatible with policy learning as well. We show in the supplement video that existing methods, e.g.
DiffHand [194] have significant difficulties with joint optimization of policy and morphology when presented with task
variations. Hence, this is still an open problem for future work. Please see sites.google.com/stanford.edu/learning-
tool-morphology for more details.

https://sites.google.com/stanford.edu/learning-tool-morphology
https://sites.google.com/stanford.edu/learning-tool-morphology
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Figure 6.3: Visualization of our end-to-end pipeline for learning tool morphology. We first obtain
the tool parametrized by morphology parameters θθθ with cage-based deformation. Then we execute
the policy π with this tool in the simulator and output the loss. Since all of these operations are
differentiable, we can get the analytical gradients to update θθθ. We also show the evolving shape for
a winding tool. The bottom part gradually becomes larger, which prevents the rope from slipping
off.

In this work, we adopt the Mean Value Coordinate method [94, 194] for computing the deformation

weights wij . Using these weights, we can manipulate the low-resolution cage vertices to deform the

high-resolution mesh. Suppose we deform the cage C and obtain new cage vertices c′j∈C′. Then, we
can compute the deformed mesh vertices as m′

i ∈M′, with m′
i =

∑
wijc

′
j, ∀j, c′j ∈ C′.

To get an even more compact representation of the tool morphology, we further extract the high-

level morphology attributes (e.g. tool segment length, height, width) and denote these morphology

parameters as θθθ ∈ Rd. Fig. 6.2 shows a basic example. When we change the morphology parameters

corresponding to segment width from θθθ to θθθ′, we first map θθθ′ to a deformed cage C′, obtaining vertices
c′j ∈ C′. Then, we compute the deformed tool mesh m′

i ∈ M′ using Eqn. (6.1). The mapping from

θθθ′ to cage C′ and that from cage C′ to object meshM′ are both linear, so the overall mapping from

θθθ′ to meshM′ is linear as well.

6.3.3 End-to-end Pipeline Based on Differentiable Simulation

With morphology parameterized by Cage-Based Deformation, we can now build our end-to-end tool

morphology learning framework with differentiable simulation. In this work, we adopt DiffHand

[194] as our backbone simulator and build our pipeline upon it. However, our framework is agnostic

to the choice of differentiable simulators and thus compatible with other differentiable simulators as

well.
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We visualize our end-to-end pipeline in Fig. 6.3. With the cage-based deformation, we effectively

parametrize the tool with morphology parameter θθθ. We then instantiate the task with the deformed

tool, initialize it with initial state sss0, and execute the robot policy π in the differentiable simulator.

We then compute the gradients of the task-dependent loss L(π;sss0, θθθ) with respect to θθθ:

∂L(π;sss0, θθθ)
∂θθθ

=
∑

mi∈M,cj∈C
∂L(π;sss0,θθθ)

∂mi
· ∂mi

∂cj
· ∂cj∂θθθ . (6.2)

∂L(π;sss0,θθθ)
∂mi

is provided by the differentiable simulator. ∂mi

∂cj
and

∂cj
∂θθθ are derived from the cage-based

deformation in Sec. 6.3.2. We then take a gradient step on the tool morphology parameter θθθ and

repeat the process until convergence.

6.4 Continual Learning for Robust Tool Morphology

In this section, we describe how we learn a robust tool morphology using the end-to-end pipeline

from Sec. 6.3. We first elaborate on the challenges of learning robust tool morphology for contact-

rich scenarios from several perspectives in Sec. 6.4.1, and then formulate the learning problem as

continual learning and introduce our proposed method in Sec. 6.4.2.

6.4.1 Challenges for Learning Robust Tool Morphology

We aim to learn a tool morphology that is customized for a specific contact-rich manipulation

task, while also being robust and generalizable to task variations, e.g. different start states for the

task. Instead of being able to handle just one initial state, as in [194], we propose to learn tool

morphology parameter vector θθθ that generalizes across a distribution of initial states sss0 ∼ ρ0(sss) .

Since evaluating the expectation of the loss would be intractable, we sample a set of N initial states,

S = {sssi0|sssi0 ∼ ρ0(sss), i = 1 . . . N} and instead optimize the empirical expectation of the loss:

θθθ∗ = argmin
θθθ

1

N

∑
sssi0∈S

[
L(π;sssi0, θθθ)

]
,

S = {sssi0|sssi0 ∼ ρ0(sss), i = 1 . . . N}
(6.3)

Directly optimizing this loss with our pipeline in Sec. 6.3 by unrolling episodes in the simulator

with different initial states sssi0 ∈ S comes with several challenges. First of all, compared to tasks that

do not have complex dynamics, contact-rich manipulation tasks usually have a highly non-convex

optimization landscape, which causes gradient-based optimization algorithms to easily get stuck in

local minima. Fig. 6.4 illustrates this by comparing the contact-rich task of Winding a rope on a

spool to a free-space Reaching task. Therefore, for contact-rich tasks, directly optimizing Eqn. (6.3)

might converge to local optima leading to suboptimal θθθ values that determine the tool morphology.

Second, there is a tradeoff when choosing N , the number of samples in our empirical estimate of the
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Figure 6.4: We visualize the 2D slices of the loss landscape for the contact-rich Winding scenario
and the no-contact Reaching scenario. For Winding, the goal is to prevent the rope from falling.
For Reaching, the goal is to optimize the arm so that the end-effector can reach the green dots. The
variables we optimize over are illustrated in the figure as x,y: for Winding these are the lengths of
two sides of the tool base; for Reaching these are the lengths of two of the robot links. The details
for the loss functions are given in the Appendix. It is clear that the optimization landscape of the
contact-rich task is significantly more complex than that of the no-contact task.

loss in Eqn. (6.3): Small values of N correspond to an insufficient number of samples, and would fail

to capture the distribution ρ0(sss). Large values of N are expensive computationally, since evaluating

even one gradient step requires unrolling N episodes in the differentiable simulator.

6.4.2 Continual Learning Based Algorithm

Given the challenges of learning a robust tool morphology with our end-to-end pipeline in Sec. 6.3,

we draw inspiration from continual learning [104, 154, 125].

Formally, we refer to an MDP defined in Sec. 6.3 with the initial state distribution as a scenario.

Within a given scenario, a task variation T i denotes a restricted MDP with one initial state sssi0

instead of a distribution over initial states. Meaning, for this work we consider task variations that

are MDPs with different initial states. In general, task variations could be defined in other ways,

e.g. variations in the physical parameters, variations in the goal states, etc. With sampling task

variation T i using sssi0 ∼ ρ0(sss), optimizing Eqn. (6.3) is equivalent to minimizing the average loss on

the sampled task set T = {T 1 . . . TN}:

θθθ∗ = argmin
θθθ

1

N

∑
T i∈T [L(π;sssi0, θθθ)]

T = {T 1 . . . TN}
(6.4)

Morphology Optimization over a Sequence of Tasks. We can now formulate the problem of

learning the morphology for a set of initial states as a continual multi-task learning problem, where

the morphology learned for one initial state can inform the optimization of morphology in other task
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variations with different initial states. To tackle the issue of this optimization being intractable for

large values of N , we draw inspiration from continual learning and solve the problem for the sampled

task set T in a sequential manner. Task variations are solved sequentially in batches B0, B1..., where

each batch Bt contains M task variations, Bt = {T (1)
t . . . T

(M)
t |T (i)

t ∈ T, i = 1 . . .M}. We select

M ≪ N so that optimizing for each batch becomes tractable. This addresses the second challenge

regarding the trade-off for choosing a small number of samples in Sec. 6.4.1, while still recovering

the task set T =
⋃N/M

t=1 Bt by processing the batches sequentially.

Constructing the Loss with Knowledge Distillation Regularization. We denote the mor-

phology parameter vector we obtain after optimizing over a sequence of batches B1...Bt−1 by θθθt−1.

At timestep t, our method aims to learn θθθt using an incremental learning strategy by processing

the current batch Bt. Intuitively, we aim to minimize the task loss Ltask
t on the current batch Bt:

Ltask
t (θθθ) = 1

M

∑
T

(i)
t ∈Bt

L(π;T (i)
t , θθθ). To avoid forgetting what has already been learned, we construct

a regularization term Ldistill
t for distilling previous knowledge. To this end, we maintain a distil-

lation task set D, which is obtained by randomly sampling M task variations from the previously

seen ones, i.e. from
⋃
{B1, ..., Bt−1}. When optimizing for θθθt on the current batch, we still want the

updated parameters θθθt to perform similarly to θθθt−1 on the previous task variations in distillation

set D. Thus, we define the regularization term Ldistill as the squared error between the simulated

trajectories generated when using θθθt vs θθθt−1:

Ldistill
t (θθθt) =

1

M

∑
T (i)∈D

(
sim(π;T

(i)
t , θθθt−1)− sim(π;T

(i)
t , θθθt)

)2

.

We could compute the distillation loss on a part of the trajectory that matters for the task, e.g.

height of the rope for the Winding scenario (Appendix gives further details).

Finally, we get the overall loss by combining Ltask
t and Ldistill

t with a regularization coefficient α:

Lt(θθθt) = Ltask
t (θθθt) + αLdistill

t (θθθt).

Simplifying Optimization with Dimensionality Reduction. As visualized in Fig. 6.4, the

contact-rich tasks considered in this chapter result in a complex optimization landscape that is

difficult to optimize over. To alleviate this issue, we draw inspiration from Coordinate Descent [192]

and propose to simplify the optimization problem by reducing the dimensionality of the decision

variable. For a new batch Bt, we evaluate the gradient with respect to the currently optimal θθθt−1

and select d′ < d dimensions of parameters θθθt−1 with the largest gradient magnitude. Then we only

update these d′ < d dimensions of parameters θθθt−1 to get θθθt. Once a dimension has been optimized

in previous batches, we do not select it anymore. When all dimensions have been optimized, we

restart (i.e. mark all dimensions as available for optimization) and repeat the process, decaying the

learning rate with ϵ = e−1.
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6.5 Experiments

To test the performance of our proposed algorithm, we learn the tool morphology for three scenarios

in simulation and evaluate the learned tool both in simulation and on a real robot manipulation

setting. We first discuss the aspects that are the same for the three scenarios we consider, and then

further elaborate on each of the scenarios separately.

Setup. We learn the tool morphology for all three scenarios with the differentiable simulator

DiffHand [194]. Across all scenarios, for our algorithm (Ours), we set the regularization coefficient

α=0.1. The implementation details including hyperparameters are given in Appendix.

Scenarios. We consider three scenarios shown in Fig. 6.5.

1. Winding : In this scenario, a rope is wound around a tool, then if the rope does not slip off

the tool for a range tool’s orientations – this is considered a success. Here we do not consider

adapting the robot policy, since the rope can be wound by a simple circular motion. Hence, we

compute the loss after the rope is wound and the end of it is left hanging free. With this, the

rope would fall, unless it is supported by the tool. Since the simulator we use in this work can

only model rigid objects, we use a chain of cuboids to serve as the rope in the task.

2. Flipping : In this scenario, we aim to learn a robot arm morphology that can flip a box by 90◦.

For control, here we first learn a basic flipping policy π (described in Appendix). This scenario

is similar to that in previous work [194], except we consider a distribution of initial box poses,

while in prior work the box is placed at one fixed position and orientation.

3. Pushing : This scenario is based on bimanual scooping used for food acquisition as in [65]. We

aim to learn the morphology of a pusher that can push a pea on a table into a scoop. Peas are

modelled as spheres. Task variations T i are instantiated with different initial pea positions. For

the trajectory of the pusher we use a forward motion with a zig-zag shape, which can make it

challenging for the pusher to prevent the peas from rolling away.

We selected these scenarios because they include (i) various types of objects (rope, box, spherical

peas), (ii) objects with different physical properties (boxes with sharp edges in scenario Flipping,

smooth spheres in scenario Pushing), and (iii) varying contact conditions including a rope sliding on

a winding tool, robot holding on to a sharp box edge for pivoting, and spheres rolling over a tool’s

surface.

Baselines. We implemented two baselines for comparison:

1. Baseline-DiffHand : we optimize θθθ for only one batch of tasks: θθθ = argminLtask
0 (θθθ). This baseline

is a direct extension of DiffHand [194] obtained by replacing the single initial state with one batch

of initial states and optimizing until convergence, without bringing in the continual learning

aspect.
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Figure 6.5: Evaluation results on scenarios Winding (top row), Flipping (middle row) and Pushing
(bottom row). For each scenario, we implement Baseline-DiffHand, Simple-Continual and our algo-
rithm (Ours) in simulation. For quantitative evaluation, we report the mean and standard deviation
over ten runs for the task loss for Winding and test accuracy for Flipping and Pushing. For qualita-
tive evaluation we visualize examples of two optimized morphologies from baseline Simple-Continual
and our algorithm (Ours).

2. Simple-Continual : we optimize θθθ by minimizing the task loss sequentially for batches B1, ..., Bt, ...

as we would in a continual learning setting, making this a stronger baseline. At batch Bt, we

start from θθθt−1 and obtain θθθt using θθθt=argminLtask
t (θθθ). After optimizing for all the batches, we

get the final morphology parameter θθθt=N/M . With the continual learning setting introduced, the

difference between Ours and this baseline is that Ours uses knowledge distillation regularization

in addition to the task loss, and simplifies the optimization with dimensionality reduction.

6.5.1 Results & Analysis in Simulation

As shown in Fig. 6.5, the simulation results demonstrate that the tool morphology learned with

our algorithm consistently outperforms both Baseline-DiffHand and Simple-Continual in terms of a

lower test loss and higher test success rate. Across all the scenarios, Baseline-DiffHand demonstrates
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the worst performance with the largest variance. This is because, compared to optimizing over

sequential batches of task variations, approximating the task distribution with only one batch will

inherently be noisier. In scenario Flipping and Pushing, the baseline Simple-Continual outperforms

the Baseline-DiffHand. This also indicates that learning from a sequence of task variations instead

of one batch is beneficial. In scenario Winding, baseline Simple-Continual and Baseline-DiffHand

show poor performance with a high average loss and large standard deviation, while Ours achieves a

low loss and small variance (visualized as standard deviation in the bar plots). For some of the runs,

Simple-Continual and Baseline-DiffHand have an exceptionally high loss due to completely failing

to hold the rope, so the rope quickly falls down. For both baselines, the performance deteriorates

significantly for some batch sequences by converging to a suboptimal morphology parameter. In

contrast, our method is not sensitive to how batches are sampled.

We visualize two of the learned tool morphologies for Ours and baseline Simple-Continual for

each scenario in Fig. 6.5. In scenario Winding, one of the learned shapes from Simple-Continual has

one pointed end and one flat end, making the tool not effective for a certain range of orientations.

This shows that the shape of the tool learned with baseline Simple-Continual sometimes does not

perform well across all task variations. In scenario Flipping, in contrast to the wide arm tip learned

by the Simple-Continual baseline, our method learns a finer triangular tip, which can exert enough

pressure close to the edge of the box to cause it to flip, thus achieving a higher success rate. In

scenario Pushing, our method learns a tool morphology with widening ends and a middle segment

has a similar width as the scoop. The baseline Simple-Continual either learns a narrow middle

segment or a wide one. An appropriate width for the middle segment can better facilitate pushing

the peas all the way into the scoop. Specifically, a too narrow middle segment might result in a gap

between the pusher and the scoop and thus have a hard time pushing the peas all the way into the

scoop, while a too wide middle segment can result in the pea rolling away. In summary, across the

three scenarios, we observe that the learned morphology from our algorithm demonstrates better

performance.

6.5.2 Evaluating Learned Tools in the Real World

We manufactured the tools learned with our method for scenario Winding and Pushing as shown in

Fig. 6.6. The tools were 3D printed on an Ender 3 Pro 3D printer using PLA filament. We tested

the functionality of the tool in these two scenarios. In scenario Winding, we execute a simple control

sequence that winds the rope around the tool. After winding, we rotate the tool in the air with a

full circle of 360 degrees around axis x as shown in Fig. 6.6 . A trial is counted as success if the

rope successfully stays wrapped around the tool after winding and rotating. We run 5 episodes with

the initial shape and the optimized shape. Results show that the optimized shape achieves 100%

success rate while the initial shape keeps the rope on the tool only 20% of the time. For scenario

Pushing, as shown in Fig. 6.6, we use the Franka Panda robot arm on the right to hold the pusher
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Figure 6.6: Real world experiment set up for Winding and Pushing. For each scenario, we 3D
print the tool with the initial shape and the optimized shape obtained by our approach. For sce-
nario Winding, we first wind the rope around the tool and then rotate the tool around the high-
lighted x axis for 360 degrees to test whether the rope drops. For videos of experiments please see
https://sites.google.com/stanford.edu/learning-tool-morphology

and try to push the white sphere to the flat dustpan held by a Kinova Gen3 arm on the left. The

arm follows the waypoints of a pre-defined zig-zag trajectory. We also sample 4 initial locations for

the pea and run 5 episodes for each initial location, which leads to 20 episodes for one tool. The

experiments show that the optimized shape achieves 70% success rate across the 20 trials while the

initial shape achieves 15% success rate.

6.6 Conclusion and Discussion

Summary. To summarize, in this work, we approach the problem of custom tool design for robot

manipulation in an end-to-end manner by leveraging the advantages of differentiable simulation. To

learn versatile tool morphologies, we propose a continual learning approach that enables optimization

over task variations, e.g. by varying initial object poses. We show that tools optimized with our

method help to achieve an improved task performance compared to baselines in simulation. We also

demonstrate that these tools enable successful task completion in reality.

Limitations and Future Work. While we view our work as a step towards enabling tool opti-

mization for contact-rich tasks, we acknowledge several remaining challenges. First, for scenarios

with a large sim-to-real gap, seamlessly transferring the tool learned in simulation to the real world

is expected to be challenging [199]. Second, optimizing the tool shape and the manipulation policy

jointly remains difficult. While DiffHand [194] enables such co-design in principle, we found that

https://sites.google.com/stanford.edu/learning-tool-morphology
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in practice the joint optimization of policy and morphology fails for a large number of task varia-

tions. One option is to develop methods that can achieve stable optimization by iteratively adapting

morphology and policy during training. We intend to explore this direction in future work.



Chapter 7

Conclusions

7.1 Summary of Contributions

The thesis focuses on enabling robots to adapt to changing circumstances, including robots adapting

to humans, robots adapting to robots, and robots adapting to tasks. Instead of relying on pre-defined

motion primitives or generic models, we aim at developing adaptive and intelligent robots so that

they can operate effectively across a wide range of scenarios where the environment can be dynamic,

tasks can be complex, and users can have varying capabilities and preferences.

In the first part of thesis, we begin by investigating how robots can adapt their behavior to better

meet the needs and preferences of individual users and groups. In Chapter 2 and Chapter 3, we

propose methods for personalizing the control for teleoperating assistive robots, as well as enabling

robots to infer the user’s intention from sequences of physical corrections and adapt its behavior

accordingly. Additionally, We further focus on how robots can better adapt to human groups in

Chapter 4 and develop a framework that first reasons over the group structure and then leverage it

for planning.

The second part of the thesis extends the investigation from human users to robot agents. We

tackle the problem of how decentralized robot teams can adapt to each other by observing only

the actions of other agents in Chapter 5. We propose a framework for establishing communication

protocols among robots that enables them to adapt their behavior to the behavior of other agents

in the team.

In the final part of our dissertation, we explore how robots can adapt to specific tasks by devel-

oping customized tools. We proposed a novel tool design approach for improving the performance

of robots in manipulation tasks in Chapter 6. By simplifying the problem with dimensionality re-

duction and reinterpreting continual learning as a robust optimization framework, we effectively

optimize the tool morphology for specific task objectives.

Overall, our research has contributed to advancing the field of robotics by proposing new methods

94
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and frameworks for enabling robots to adapt. Our contributions have the potential to enhance the

efficiency and effectiveness of robots across various applications, ranging from healthcare assistive

robots to disaster response and manufacturing. The thesis presents new avenues for future research

in the field and provides valuable insights for the development of more advanced robot learning

techniques, facilitating the creation of more intelligent robot behaviors.

7.2 Limitations and Future Work

While this thesis achieves preliminary success in enabling robots for adaptation to humans, robot

agents and tasks under various scenarios, there still remain several limitations and challenges to

address.

Insufficient Modeling of Human Adaptation. Across most of our works in Part I, we assume

the preferences that we aim to capture are stationary. However, humans are highly adaptable, and

their non-stationary nature poses challenges when scaling up and deploying robots in real-world

scenarios. Assuming that human preferences are fixed and relying solely on the robot to adapt to

human users may not be accurate. It is crucial to understand and model humans’ adaptive behavior

to bridge the gap between robots and humans.

Insufficient Modeling of Non-Stationary Dynamics. In Parts II and III, we focus on enabling

robots to adapt to various environments and tasks. However, we make the assumption that the

environment and task remain stationary and do not change during the robot’s execution. In reality,

the dynamics of the environment can change over time, which poses new challenges for robot adap-

tation. For instance, in a warehouse, the layout of the facility may change as new items arrive or old

ones are removed, making it challenging to coordinate and communicate effectively. Similarly, in an

agricultural setting, crops grow and change shape over time, which can pose difficulties in selecting

or designing appropriate tools and grippers capable of handling novel shapes.

Data Efficiency. With the increasing popularity of deep learning methods in robotics, efficient

data utilization becomes essential. Training neural network models requires a large amount of data,

which can be expensive to collect when deploying the robot. This cost is even higher or sometimes

infeasible when humans are involved, such as with assistive robots for individuals with disabilities or

physical limitations. In Chapter 2, we proposed one method to tackle this problem by incorporating

intuitive priors. However, more complex and dynamic scenarios require additional investigation. One

promising direction is to extract as many priors as possible from large datasets in an unsupervised

way. This might have the potential to reduce the need for extensive data collection, making it

more feasible and cost-effective to develop and deploy deep learning models in real-world robotic

applications.

Overall, the field of robotics presents many challenges and opportunities, and its interdisciplinary

nature offers a wide range of avenues for research. We look forward to seeing more innovative and



CHAPTER 7. CONCLUSIONS 96

promising works that push the boundaries towards the ultimate goal of enabling intelligent robots

to interact with the world with human-level intelligence.



Appendix A

Chapter 5 Appendix

A.1 Derivations for Eqn. (5.1)

π1(a
t
1 | s0:t1 , a0:t−1, at2) =

∑
s0:t2

P (at1, s
0:t
2 | s0:t1 , a0:t−1, at2)

=

∑
s0:t2

P (at1, a
t
2, s

0:t
2 | s0:t1 , a0:t−1)

P (at2 | s0:t1 , a0:t−1)

∝
∑
s0:t2

P (at1, a
t
2, s

0:t
2 | s0:t1 , a0:t−1)

=
∑
s0:t2

P (at2 | at1, s0:t2 , s0:t1 , a0:t−1) · P (at1 | s0:t2 , s0:t1 , a0:t−1)

· P (s0:t2 | s0:t1 , a0:t−1)

=
∑
s0:t2

π2(a
t
2 | s0:t2 , a0:t−1, at1) · π∗

1(a
t
1 | st1, st2) · P (s0:t2 | s0:t1 , a0:t−1)

(A.1)

Thus we have

π1(a
t
1 | s0:t1 , a0:t−1, at2) ∝

∑
s0:t2

π∗
1(a

t
1 | st1, st2) · π2(a

t
2 | s0:t2 , a0:t−1, at1) · P (s0:t2 | s0:t1 , a0:t−1)

(A.2)

Similarly, we could derive the symmetric formulation for π2.

π2(a
t
2 | s0:t2 , a0:t−1, at1) ∝

∑
s0:t1

π∗
2(a

t
2 | st1, st2) · π1(a

t
1 | s0:t1 , a0:t−1, at2) · P (s0:t1 | s0:t2 , a0:t−1)

(A.3)
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A.2 Derivations for Eqn. (5.7)

For the stochastic centralized policy, we have:

π∗
1(a1 | s1, s2) = N (K11s1 +K12s2, w

2
1)

π∗
2(a2 | s1, s2) = N (K21s1 +K22s2, w

2
2)

(A.4)

The states s1 and s2 are constant and independent, and sampled from Gaussian priors: s1 ∼
N (µ1, σ

2
s1) and s2 ∼ N (µ2, σ

2
s2). Without loss of generality, let agent 1 be speaker and agent 2 is

listener. The speaker and listener policies are:

π1(a1 | s1) = N (K11s1 +K12µ2, σ
2
1) (A.5)

π2(a2 | s2, a1) = N (K21K
−1
11 (a1 −K12µ2) +K22s2, σ

2
2) (A.6)

Now we can do the KL divergence to solve for the parameters θ = {σ1, σ2}

min
θ
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θ

[
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+
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(A.7)

Taking expectation over Eqn. (A.7), we reach:

min
θ

E[KL] = min
θ

[
K2

12σ
2
s2

2w2
1

+ log
w1w2

σ1σ2
+
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1

2w2
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2
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2
11
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2

]
(A.8)

The optimal choices of σ1 and σ2 are:

σ1 =
K11w1w2√

K2
11w

2
2 +K2

21w
2
1

, σ2 = w2 (A.9)

So far, we already derive Eqn. (5.7). Further, the minimum values for the KL divergence are given

by:
K2

12σ
2
s2

2w2
1

+ log

√
K2

11w
2
2 +K21w2

1

K11w2
+ 1 (A.10)

A.3 Simulation Environment

In our simulation environment, we make the simplification of making agent i velocity vi as input

action, instead of force. And we pose no hard constraint of speed continuity. Formally, Eqn. (A.11)
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gives the system dynamics. The team center’s translation velocity vtransc is the average of two agents’

input velocity v1 and v2, the angular velocity for rotation is computed by first projecting the velocity

difference to the stick’s perpendicular direction (unit vector ur
i points from stick center to agent i).

And then dividing by r, the length from stick center to agent (half length of the whole stick)

vtransc =
1

2
(v1 + v2), ω =

1

r
ur
i × (vi − vtransc ) (A.11)

A.4 Planning

We adopt the well-known potential field model [18] for planning. Agents at location q plan their

path under the influence of an artificial potential field U(q), which is constructed to reflect the

environment. There are two types of potential field sources. We denote the set of attractions k ∈ A
and the set of repulsive obstacles j ∈ R. The overall potential field is the sum of all attractive

and repulsive potential field sources as in Eqn. (A.12). The action (input velocity vi) an agent i

at location qi takes lies in the direction of the potential field gradient as in Eqn. (A.13). wv is a

predefined hyperparameter controlling velocity scale. In this way, the potential field planner could

naturally combine agent’s knowledge of goal g as an attraction and its nearby obstacles as repulsive

sources.

U(q) =
∑
k∈A

Uk
att(q) +

∑
j∈R

U j
rep(q) (A.12)

vi(qi) = −wv∇U(qi) = −wv(
∑
k∈Ai

∇Uk
att(qi) +

∑
j∈Ri

∇U j
rep(qi)) (A.13)

In our implementation, we directly give the gradient for attractive potential field ∇Uk
att(q) and

repulsive potential field ∇U j
rep(q) as in Eqn. (A.14) and Eqn. (A.15). watt and wrep are the hy-

perparameters controlling the relative scale of the attractive and repulsive potential field. qk is the

location for attraction k. qj is the location for repulsive source j. ρj(q) is the minimum distance of

agent at location q to obstacle j. ρ0 is a hyperparameter controlling the effective range of repulsive

potential field. The repulsive potential field is 0 outside of the range ρ0.

∇Uk
att(q) = watt ∗

q − qk
∥q − qk∥

(A.14)

∇U j
rep(q) =

 wrep ∗
(

1
ρj(q)

− 1
ρ0

)(
1

ρj(q)

)
q−qj

∥q−qj∥ if ρj(q) ≤ ρ0

0 if ρj(q) > ρ0
(A.15)



APPENDIX A. CHAPTER 5 APPENDIX 100

Table A.1: Average centralized game length over failure cases when both robots knew the geometry
of the obstacles a priori.

Roles (Dynamic) Roles (Static)

Obstacles T = 1 T = 4 T = 16 Speaker-Listener Speaker-Speaker

n = 2 164.00 152.93 146.53 145.96 143.13
n = 4 181.11 154.98 149.99 148.04 146.75
n = 8 167.61 160.47 156.89 158.13 154.65

A.5 Inference

As discussed in Sec. 5.3 and Sec. 5.4, the listener would perform inference over the speaker i’s action

vi(qi). In our context, since the goal attraction is known and shared, what the listener is trying to

infer are the speaker’s repulsive obstacles j ∈ Ri. In our implementation, the listener approximates

the speaker i’s repulsive potential field with one inferred obstacle j̄i at location q̄i. More formally,

this is equivalent to solving Eqn. (A.16)

vi(qi) = −wv(
∑
k∈Ai

∇Uk
att(qi) +∇U j̄i

rep(q̄i)) (A.16)

Combined with Eqn. (A.14) and Eqn. (A.15), numerical solution for obstacle j̄i’s location qj̄i is

obtained by bisection iteration.

A.6 Supplementary Experiment Results

We show our supplementary experiment results in simulation for Sec. 5.5.2 and Sec. 5.5.4 here

respectively.

A.6.1 Rapidly Changing Roles Outperforms Static Roles

In this setting, in addition to success rate λ for Table 5.1 in Sec. 5.5.2, we also measure an additional

metric, centralized policy’s average game length l for dynamic role and static role teams. The results

are summarized in Table A.1. The dynamic role team with shortest switch interval has the highest

game length. It indicates that its failure cases are the most difficult and thus suggests that it could

deal with more complex environment.

A.6.2 Roles with Noisy Action Observations Match Noisy Messages

In Sec. 5.5.4, we explored the noisy action observation case with coefficient of variance 0.1 as in Ta-

ble 5.2. We also vary the noise level by setting different coefficient of variation σ
µ ∈ {0.001, 0.01, 0.1}.

The σ is the Gaussian standard deviation, and the µ is the mean value of action observation, i.e. the
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groundtruth action value. For explicit communication, we add the same scale communication noise

(coefficient of variation) for sending obstacle location. We summarize our full results in Table A.2.

As noise level increases, the success rate gradually drops and the gap between dynamic role and

explicit communication becomes greater. This is because the error gets amplified by the nonlinear-

ity during inference process. Nevertheless, across all cases, the dynamic role methods with short

switch interval (T = 1, 4) consistently performs better than fixed speaker-listener team, followed by

dynamic role with long switch interval (T = 16), and then the speaker-speaker team. Overall, the

dynamic role strategy could decently deal with disturbance and the performance is still on par with

explicit communication.

Table A.2: Success rate λ over 1000 games when communication is noisy. σ
µ is coefficient of variation

that controls the noise level for both action observation and explicit communication. Here S-L
represents the static Speaker-Listener team and S-S for static Speaker-Speaker team.

Explicit Roles (Dynamic) Roles (Static)

Obstacles noise level σ
µ T = 0 T = 1 T = 4 T = 16 S-L S-S

n=2
0.001 0.997 0.989 0.89 0.818 0.889

0.7580.01 0.996 0.980 0.891 0.814 0.889
0.1 0.925 0.884 0.818 0.787 0.829

n=4
0.001 0.984 0.943 0.778 0.653 0.731

0.5580.01 0.981 0.927 0.768 0.651 0.731
0.1 0.833 0.747 0.669 0.606 0.655

n=8
0.001 0.904 0.738 0.531 0.388 0.495

0.2960.01 0.900 0.716 0.504 0.388 0.491
0.1 0.553 0.512 0.416 0.357 0.398
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Chapter 6 Appendix

Here, we provide additional details for the Winding, Flipping, and Pushing scenarios discussed in

Section V and the Reaching scenario visualized in Fig. 4. Recall that our objective is to optimize

a vector of parameters θθθ, which encodes the morphology of the tool in each scenario. Across all

scenarios in Section V, for our algorithm (Ours), we set the regularization coefficient α=0.1. We

summarize other hyperparameters for each scenario in Table B.1.

Scenario N M d d′

Winding 200 5 8 2

Flipping 100 5 9 2

Pushing 100 5 7 2

Table B.1: Hyperparameters.

B.1 Winding

Loss function: In this scenario, we use 15 linked cuboids to approximate a rope. At each simulation

time step τ , we denote the position of the rope’s center of mass as (xτ (θθθ), yτ (θθθ), hτ (θθθ)). The task

loss is the height of the rope’s center of mass hτ (·) squared, summed over all time steps. This is

computed by letting the rope fall under gravity for H simulation steps:

Ltask(θθθ) =

H∑
τ=1

(hτ (θθθ)− h0)
2.

102
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Figure B.1: We visualize three example initial states for the scenario Winding. Here, the initial
orientation for the rope and the tool are sampled from a uniform distribution on the space of
rotations in 3D.

Here, h0 is the height of the rope’s center of mass at time step τ = 0 at the start of the simulation.

Suppose the morphology optimized so far is expressed by θθθt−1. Our distillation loss for θθθt to prevent

our model from forgetting what has already been learned is defined as:

Ldistill(θθθτ ) =
1

H

H∑
τ=1

(hτ (θθθk)− hτ (θθθt−1))
2.

Policy: In scenario Winding, we initialize the rope to be placed around the tool. The task

variations correspond to different initial orientation of the tool and rope as shown in Fig. B.1. We

let the rope drop and the rope will not fall if the tool can effectively support the rope.

B.2 Flipping

Loss function: This scenario is adopted from [194] with the difference that we randomize the initial

state of the box (see Fig. B.2). We use the same task loss as in [194] for Ltask:

Ltask(θθθ) = cflip

∥∥∥ϕH(θθθ)− π

2

∥∥∥2 + H∑
τ=1

(
cu ∥uτ (θθθ)∥2 + ctouch ∥pτ (θθθ)− pbox ∥2

)
with cu = 5, ctouch =

{
1 t < H/2

0 t ≥ H/2
, cflip = 50.

Here, for simulation step τ , uτ (θθθ) ∈ [−1, 1] is the robot action, pτ (θθθ) is the finger tip position, and

ϕτ (θθθ) is the rotation angle of the box.
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Figure B.2: We visualize three example initial states for the scenario Flipping. Here, the initial
position is uniformly sampled from a square area in [-2, -2] to [2, 2], and the orientation for the box
is sampled from a uniform distribution between [−90◦, 90◦] around the vertical axis.

For our algorithm, we define the loss Ldistill(θθθt) as:

Ldistill(θθθt) =
1

H

H∑
τ=1

[
(uτ (θθθt)− uτ (θθθt−1))

2 + (pτ (θθθt)− pτ (θθθt−1))
2 + (ϕτ (θθθt)− ϕτ (θθθt−1))

2
]
. (B.1)

Policy: For this task, we train a neural network (NN) to obtain a basic closed-loop policy π. For

training data, we first randomly sample a range of starting cube orientations. Then for each pose,

we separately run DiffHand [194] to learn a basic morphology and an open-loop policy. In practice,

only a small number of such open-loop policies succeed. Hence, we did not attempt to jointly learn a

policy and morphology over a distribution of starting poses, since that problem would be even more

difficult. Nonetheless, we can use the trajectories that succeed at flipping the cube to construct a

training dataset. With that, we train a basic NN policy that learns to imitate successful trajectories.

This policy is ‘basic’ for two reasons. First, only a small number of open-loop policies are successful

(as mentioned above), so the training data contains example trajectories for only a small portion of

the space. Second, the examples are from policies trained jointly with morphologies. This means

the open-loop policies are unlikely to succeed when used with another morphology, unless we can

solve the problem of finding a versatile morphology that works for a range of cube poses. The latter

is exactly the problem we address in this work.

B.3 Pushing

Loss function: In this scenario, our goal is to push a pea onto a scoop that is placed on the table.

We denote the half width of the scoop to be xscoop. Fig. B.3 visualizes the scoop placed such that

its opening is located at {(x, y)|y = yscoop,−xscoop < x < xscoop}. We denote the x coordinate of
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the pea’s position as x̃(θθθ). In the figure the y coordinate of the pea’s position is y = yscoop, same as

the y coordinate of the tip of the scoop. We construct the task loss by giving a penalty when the

pea is outside of the opening of the scoop, i.e. x̃i(θθθ) ̸∈ (−xscoop, xscoop):

Ltask(θθθ) =

{
0 ||x̃(θθθ)|| < xscoop

(||x̃(θθθ)|| − xscoop)
2 ||x̃(θθθ)|| ≥ xscoop

}

We define the distillation loss as:

Ldistill(θθθt) =

H∑
τ=1

(xτ (θθθt)− xτ (θθθt−1))
2 + (yτ (θθθt)− yτ (θθθt−1))

2.

Policy: For this scenario, we use a predefined zig-zag trajectory for the pusher. This motion

makes it more challenging for the pusher to prevent the peas from rolling away.

B.4 Reaching

We take this scenario from [194] for visualizing the landscape in Fig. 4. Here, a finger with multiple

joints is assumed to be mounted on a wall. The finger aims to sequentially reach the target points

represented by the green dots in Fig. 4. For simulation step τ , uτ (θθθ) ∈ [−1, 1] is the action, pτ (θθθ)

is the finger tip position and p̂τ is the target point. The task loss is computed by:

Ltask(θθθ) =

H∑
τ=1

cu ∥ut(θθθ)∥2 + cp ∥pt(θθθ)− p̂t∥ with cu = 0.1, cp = 10.

Figure B.3: Visualization of Pushing annotated with the scoop position. The tip of the opening of
the grey scoop is at {(x, y)|y = yscoop,−xscoop < x < xscoop}. Here, the green pea falls outside of
the scoop, and thus will incur non-zero loss according to Eqn. (B.3).
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