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Abstract

Imitation learning is one of the most promising robot learning paradigms, which
attempts to learn robot policies from demonstrations. Standard imitation learning
algorithms assume that the demonstrations are provided by optimal experts who
are capable of perfectly performing the task on the robot of interest (i.e., the target
environment). However, under these assumptions, imitation learning usually requires
large amounts of demonstrations. This is limiting in many environments, where
collecting optimal demonstrations is difficult due to various reasons such as difficulty
of controlling robots with high degrees of freedom or limited interactions with the
environment.

In practice, we often have access to large amounts of imperfect demonstrations,
which are possibly not optimal or are produced by different agents with different mor-
phologies or dynamics. Such imperfect demonstrations contain valuable information
that can be helpful for learning the optimal policy. However, directly imitating these
imperfect demonstrations will lead to learning a suboptimal policy. Instead of direct
imitation learning, we propose developing new algorithms to utilize these imperfect
demonstrations towards learning an optimal robot policy. In this thesis, we categorize
imperfect demonstrations into: i) suboptimal demonstrations, ii) cross-domain demon-
strations, and iii) infeasible demonstrations. Suboptimal demonstrations often contain
non-optimal sequence of states and actions. For example when reaching an object, the
robot might take a longer path towards the goal. Cross-domain demonstrations are
collected from agents with different morphologies or dynamics, but such demonstra-
tions can still have correspondence to behaviors of the target agent. Finally, infeasible
demonstrations are drawn from other agents that might not have any correspondence
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to the target agent.
Prior works in learning from imperfect demonstrations only focus on one of these

categories of imperfect demonstrations. In this thesis, we comprehensively address
the problem of learning from imperfect demonstrations: We formalize the different
categories of imperfect demonstrations and introduce a set of robot learning algorithms
that tackle each category when learning from these demonstrations. We will further
discuss under what assumptions each of our methods should be used with imperfect
demonstrations. We conduct experiments in a number of robotics manipulation tasks
in simulation and real to demonstrate the developed algorithms.
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Chapter 1

Introduction

In recent years, machine learning techniques have been integrated into robot learning
and enable researchers to develop robots to achieve various tasks. To learn a robotics
policy, one of the most common and useful paradigms is imitation learning. Imita-
tion learning aims to learn a policy by imitating the behavior in the pre-collected
demonstrations.

However, standard imitation learning algorithms often assume access to optimal
expert demonstrations collected directly on the target robot [2, 54, 20, 9]. These
algorithms usually require large amounts of demonstrations while it is expensive to
collect a large number of optimal expert demonstrations on the target robot due to
factors such as human bounded rationality [43] or difficulty of controlling robots with
different or high degrees of freedom [28]. Thus, this assumption limits the practical use
of imitation learning. As an alternative choice, we usually have access to a plethora
of imperfect demonstrations — demonstrations that can range from random noise
or failures to expert or even optimal demonstrations, and demonstrations that are
collected from other agents with different dynamics, different embodiments, body
schema, or joint or rigid body structures. For example, we may collect demonstrations
from people with different experience and as shown in [29], non-experts do not follow
the optimal trajectories and show suboptimal behavior.

Standard imitation learning copies the behavior of the imperfect demonstrations,
which learns an imperfect policy. The approach in this thesis aims to enable robots to
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learn from such imperfect demonstrations.
To learn from imperfect demonstrations, we need to first understand what is the

composition of imperfect demonstrations. How do different components of imperfect
demonstrations influence imitation learning? We need to clearly discriminate which
component contains correct trajectories to learn from and which component contains
suboptimal or unlearnable trajectories that should be discarded. Based on the above
understanding, we need to develop algorithms to tackle each component of imperfect
demonstrations. In this thesis, we attempt to answer the above questions.

1.1 Thesis Approach

To learn a policy for a new robot, imperfect demonstrations exist both in off-the-
shelf datasets and in the process of collecting new demonstrations. Leveraging
these data relieves the stress of insufficient optimal demonstrations and also enables
learning a better policy. Our approach divides the imperfect demonstrations into
three components: (1) suboptimal demonstrations showing suboptimal behavior but
are collected on the target robot; (2) cross-domain demonstrations which are collected
on other agents but still have correspondence to the target robot; (3) infeasible
demonstrations which are collected on other agents but cannot be achieved by the
target robot (thus without correspondence). We show examples and analyze the
challenges of each component of imperfect demonstrations and then develop algorithms
to tackle each component in the corresponding chapters.

Though recent works trying to address learning from imperfect demonstrations [47,
7, 26], they usually focus on only one component in the imperfect demonstrations. In
this thesis, we aim to comprehensively analyze and solve the problem of learning from
all kinds of imperfect demonstrations, which is crucial to the practical use of imitation
learning in real-world applications.

1.2 Contributions

The thesis makes the following contributions.
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The goal of this thesis is to develop learning algorithms to learn from imperfect
demonstrations including suboptimal demonstrations, cross-domain demonstrations,
and infeasible demonstrations.
Confidence Re-weighting for Improving Learning from Suboptimal Demon-

strations

In chapter 3, we develop confidence measurements to assess the performance of
each demonstration trajectory. When conducting imitation learning, we re-weight the
demonstrations with the confidence measurement and enable the target robot to learn
from optimal or near-optimal demonstrations and ignore suboptimal or even noisy
demonstrations. We design three methods to learn confidence measurement. The first
method learns confidence based on the rectified reward value. The second method,
Confidence-Aware Imitation Learning, learns confidence with a bi-level optimization
framework using the ranking data over demonstrations. The third method, adversarial
confidence transfer, leverages confidence annotations from other agents and transfers
the confidence function from other agents to the target robot. The three methods
learn the confidence measurement under different types of annotations.
Learning from Cross-Domain Demonstrations via Correspondence Learning

In chapter 4, we build correspondence between different agents to enable the target
robot to learn from cross-domain demonstrations from other agents. We introduce
weak supervision as the abstraction of states and actions to learn correspondence and
reduce the annotation efforts. Experimental results show that with the correspondence
built by weakly-supervised correspondence learning, the target robot can directly learn
from the optimal demonstrations from other agents.
Learning Feasibility to Re-Weight Infeasible Demonstrations

Not all demonstrations from other agents have correspondence to the target robot.
Some of the demonstrations cannot be achieved by the target robot, which is coined
infeasible demonstrations. In chapter 5, we develop a feasibility measurement to
evaluate how each demonstration trajectory is likely to be feasible in the target
environment. We re-weight the demonstrations with the feasibility measurement and
enforce the robots to learn more from demonstrations that are more likely to be
feasible. Specifically, in the first method, we develop a feasibility measurement with



CHAPTER 1. INTRODUCTION 4

the inverse dynamics function. In the second method, we design a feasibility-Markov
decision process to release the assumption of the inverse dynamics function and learn
the feasibility measurement.

To verify the performance of our approaches, for all three kinds of demonstrations,
we conduct experiments on MuJoCo, simulated robot arms, and a real robot arm to
show that our approaches learn the optimal policy under different kinds of imperfect
demonstrations.

1.3 Thesis Organization

In chapter 2, we introduce the basic problem setting for imitation learning, which gives
an introductory overview of imitation learning to readers without a robotics background
and defines the variables and notations that will be used in the following chapters.
We also give an overview of the three components of the imperfect demonstrations
to help readers have a basic idea of imperfect demonstrations before going deep into
each component.

In chapter 3, we explain how suboptimal demonstrations influence imitation
learning and propose a solution that learns a confidence measurement to assess how
likely the trajectory is optimal (Section 3.1). To achieve this solution, we develop a
confidence measurement based on the expected return of each trajectory (Section 3.2).
Due to the influence of the initial state on the expected return, we design a rectifying
function to rectify the return to the confidence measurement. Since the reward function
is difficult to obtain for many environments, we propose a confidence-aware imitation
learning framework with a bi-level optimization algorithm and resort to the easier-to-
access ranking data as the annotation (Section 3.3). We also show the convergence
bound for the algorithm. Finally, we consider a scenario where no annotation is
available for the target robot and we need to leverage the confidence annotation from
other agents. We develop an adversarial confidence transfer algorithm to transfer the
confidence function across agents (Section 3.4).

In chapter 4, we first define the correspondence between robots, which is the key
to learning from cross-domain demonstrations (Section 4.1). With the correspondence
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definition, we introduce the definition and the practical value of cross-domain demon-
strations. Then we briefly introduce the Dynamics Cycle-Consistency (DCC) [52],
which is a correspondence learning work on which our method is built. Noticing
that unsupervised correspondence learning methods like DCC still suffers from a
performance gap to the supervised correspondence learning methods, we propose
weak supervision as the similarity over abstraction of states and actions, which are
easy to annotate but significantly improve the correspondence learning performance
(Section 4.4). We also introduce multi-step dynamics cycle-consistency to enforce the
long-term alignment between agents.

In chapter 5, we focus on infeasible demonstrations, which exist in the demonstra-
tions from other agents but have no correspondence to the target robot (Section 5.1).
This means that the target robot cannot follow these demonstrations. Thus, we
propose to use a feasibility measurement to re-weight demonstrations to filter out
those far from feasible demonstrations. We utilize the inverse dynamics function to
reproduce trajectories and define the feasibility based on how likely each demonstration
trajectory can be reproduced by the target robot (Section 5.2). However, since the
inverse dynamics function is not always available for a robot environment, we remove
this assumption and develop a feasibility-MDP to learn the feasibility measurement,
which only requires the target environment without the inverse dynamics function.

In chapter 6, we summarize the contribution of the thesis and discuss the limitations
and open challenges not resolved in the thesis. Additional proofs, implementation
details, and experimental results are presented in the Appendix.



Chapter 2

Background

In this chapter, we introduce the basic problem setting of learning from imperfect
demonstrations and the background of standard imitation learning algorithms. Note
that in this chapter, we define the general notations that will be used by all of our
algorithms in Chapter 3, 4 and 5. For specific notations used in each algorithm, we
define them in the corresponding section respectively.

2.1 Problem Setting

We model the robot of interest with its environment as a standard Markov decision
process (MDP):M = ⟨S,A, T ,R, ρ0, γ⟩, where S is the state space, A is the action
space, T : S × A × S → [0, 1] is the transition probability, which indicates the
probability distribution of the next state given a state and an action. ρ0 is the initial
state distribution, which means that Each episode in the system starts with an initial
state s0 ∈ S drawn from ρ0. R : S × A → R is the reward function, which reflects
how good the agent performs at each step. γ is the discount factor.

A policy π : S × A → [0, 1] defines a probability distribution over the space
of actions in a given state. An optimal policy π∗ maximizes the expected return
ηπ = Eξ∼π[Gt(ξ)] = Es0∼ρ0,π [

∑∞
t=0 γ

tR(st, at)], where t indicates the time step.
We formalize the problem to learn the optimal policy π∗ for the MDP M as

an imitation learning problem: We are given a set of demonstration trajectories

6



CHAPTER 2. BACKGROUND 7

Ξ = {ξ1, . . . , ξD} collected by a demonstrator d following policy πd. Here each
trajectory is a sequence of state-action pairs ξ = {s0, a1, s1, a2, . . . , aN , sN}, we aim
to learn a policy π∗ that best matches the demonstration trajectories. Similarly, we
can define the expected return of a trajectory as ηξ =

∑
(st,at)∈ξ γ

tR(st, at). Note
that we focus on the offline imitation setting as employed in [20, 48], where a set
of demonstrations are provided ahead of time instead of gradually incrementing our
dataset as in online imitation learning [25].

2.2 Imitation Learning from Expert Demonstrations

In the standard imitation learning paradigm, the demonstrations are assumed to be
drawn from the expert policy πd = π∗, i.e., , a policy that optimizes the expected
return of the MDP M [37, 1, 21, 13]. With the expert demonstrations, standard
imitation learning learns a policy π parameterized by θπ to imitate the behavior in
the demonstrations. As introduced later, we will build our approaches based on the
standard imitation learning algorithms. Thus, in this section, we will briefly review
the standard imitation learning algorithms we will use.

Behavior cloning (BC) is the most basic algorithm of imitation learning, which
models imitation learning as a supervised learning problem [36]. At a given state, BC
directly minimizes the difference between the action predicted by the policy and the
ground truth action in the demonstrations. The loss is shown as follows:

LBC(θπ) = E(s,a)∈Ξ∥π(s)− a∥. (2.1)

Here we use the L2-loss as the loss to penalize the difference.
Generative adversarial imitation learning (GAIL) is another imitation learning

algorithm following a different logic from BC [20]. Instead of penalizing the action
difference at each state, it minimizes the divergence of the occupancy measure of
state-action pairs of the policy and the demonstrations. Specifically, GAIL consists
of a discriminator D parameterized by θD and the learned policy π. GAIL learns D

a discriminator to discriminate whether a state-action pair is from the policy or the
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demonstrations while enforcing the policy to generate state-action pairs to confuse
the discriminator. Such as adversarial game makes the policy generate the same
state-action distribution as the demonstrations. The loss for the discriminator is:

LGAIL(θD) = E(s,a)∈π[− logD(s, a)] + E(s,a)∈Ξ[− log(1−D(s, a))]. (2.2)

In addition, the loss for the policy can be written as:

LGAIL(θπ) = E(s,a)∈Ξ[logD(s, a)]− λH(π), (2.3)

where H refers to the entropy of the policy π and λ is the trade-off. We may use
typical policy optimization methods such as TRPO [38] to update the policy using
−LGAIL(θπ) as the reward function.

Adversarial Inverse Reinforcement Learning (AIRL) follows GAIL and also mini-
mizes the divergence of the occupancy measure. However, in addition to learning the
optimal policy, AIRL can recover the reward function that is robust to changes in
dynamics from the discriminator parameters. Therefore, AIRL updates the discrimi-
nator similar to GAIL but when updating the policy, AIRL first recovers the reward
function as:

R(s, a) = logD(s, a)− log(1−D(s, a)). (2.4)

Using the recovered reward, AIRL updates the policy using any policy optimization
methods such as TRPO [38].

In this thesis, we relax this assumption so that the demonstrations may contain
non-expert demonstrations drawn from policies other than π∗ or demonstrations
collected from other environments. We categorize the demonstrations into suboptimal
demonstrations, cross-domain demonstrations, and infeasible demonstrations and will
introduce the challenges and solutions to dealing with these demonstrations in the
next three chapters respectively.



Chapter 3

Confidence Learning from Suboptimal

Demonstrations

3.1 Suboptimal Demonstrations

When collecting demonstrations on robots, instead of purely collecting optimal demon-
strations, we usually have access to a mixture of demonstrations with varying optimality
ranging from random trajectories to optimal demonstrations. This can be caused
by various factors such as bounded human rationality [43] or difficulty of controlling
robots with different or high degrees of freedom [28].

The suboptimal demonstrations introduce a new set of challenges. First, one needs
to select useful demonstrations beyond the optimal ones. We are interested in settings
where we do not have sufficient expert demonstrations in the mixture so we have to
rely on learning from sub-optimal demonstrations that can still be successful at parts
of the task. Second, we need to be able to filter the negative effects of useless or even
malicious demonstrations, e.g., demonstrations that implicitly fail the tasks.

To address the above challenges, we propose to use a measure of confidence to
indicate the likelihood that a demonstration is optimal. The confidence w(s, a) ∈ [0, 1]

is defined on each state-action pair. The confidence score can provide a fine-grained
characterization of each demonstration’s optimality. For example, it can differentiate

9
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between near-optimal demonstrations and adversarial ones. By reweighting demonstra-
tions with a confidence score, we can simultaneously learn from useful but sub-optimal
demonstrations while avoiding the negative effects of malicious ones. So our problem
reduces to learning an accurate confidence measure for demonstrations. Previous
work learns the confidence from manually annotated demonstrations [47], which are
difficult to obtain and might contain bias—For example, a conservative and careful
demonstrator may assign lower confidence compared to an optimistic demonstrator
to the same demonstration. In this thesis, we propose two approaches to learning
confidence measurement and further learning the optimal policy from suboptimal
demonstrations. The first approach leverages the reward value as the confidence
measurement while the second approach learns the confidence from some evaluation
data, especially the ranking data.

3.2 Reward-based Confidence Measurement

We would like to define a confidence score that not only measures the instance reward
received by the state transition but also the influence of a given state transition on
the future state transitions, e.g., whether the given state transition leads to higher
expected return trajectories. Thus, we use the expected return ηξ received by each
trajectory ξ as the confidence, which can estimate how optimal a trajectory is.

3.2.1 Effects of Initial States on the Expected Return

However, the expected return suffers from some problems. Is a trajectory with a
higher expected return more useful for the policy learning of the target agent? If the
trajectories are starting from the same initial state, this claim is correct, because a
higher expected return means we have a more optimal path from this initial state.
However, when the trajectories start from different initial states, the claim may not
be correct. Imagine the case shown in Fig. 3.1, where the car navigates to the goal
from different initial states. If the car is close to the goal, e.g., one step from the goal,
the navigation seems easier while if the car is far away from the goal, the navigation
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is more difficult. The optimal trajectory for the close initial location receives a much
higher reward than the optimal trajectory for the far one and thus is assigned with
much higher confidence if we only use the expected return as our measure of confidence.
However, both trajectories (starting close or far) are important for the target agent
since they give the agent guidance on how to navigate to the goal from different initial
locations. In fact, we should assign similar confidence to both trajectories. Therefore,
naïve confidence scores based on the expected return may negatively influence the
diversity of the demonstrations.
The Confidence Score. To address this problem, we rectify the expected return
to make it conditioned on the initial states. Our key idea is that if demonstration
trajectories are from the same initial states, we should learn from the one with a
higher expected return. Based on this idea, we define a function frec : S → R. The
input is an initial state s0 and the output is the highest expected return of a demon-
stration starting from s0. We then firstly define the confidence of a trajectory ξ as:

Figure 3.1: The optimal trajectories from
different initial states with the same dy-
namics under the navigation task to reach
the orange goal as fast as possible. So the
car receives a positive reward for reaching
the goal but is punished with a negative
reward for every time step. The expected
returns received by the optimal trajectories
are different for different initial states.

w(ξ) = exp

(
−(ηξ − frec(s0))

2

2σ2

)
. (3.1)

We compute the distance between the
expected return of each trajectory ξ =

{s0, s1, . . . , sN} and the best expected re-
turn the demonstration can achieve by
starting from s0, and this can determine
the optimality score assigned to a trajec-
tory. However, the distance ηξ − frec(s0)

is smaller than 0 but the lower bound
depends on the reward function, which
may have highly different scales from the
feasibility. So we normalize this score in
the range of [0, 1]. We use a Gaussian
function for normalization instead of the
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widely-used min-max normalization [49],
which can more effectively filter out extremely low return trajectories. Here, we only
define the confidence score for each trajectory and we will introduce later that we
assign the same confidence score for each state-action pair in the same trajectory.
Learning the Rectifying Function. The key to the designed confidence measure-
ment is estimating frec – the highest expected return for an initial state. Given that
we only have access to a small number of trajectories, where the initial states and
the expected returns are known, we need a set of assumptions for generating training
data to learn frec. For example, if the initial states of two trajectories ξ1 and ξ2 are
very close, the policy learned from one trajectory can also perform on the other and
achieve a similar expected return. So we may assume that frec of the two close initial
states should be the same or at least similar. A realistic assumption for frec is the
neighborhood property: ∃δ > 0,∀ξ = {s0, s1, . . . , sN}, we set the highest expected
return for s0 as:

frec(s0) = max
ξ′∈Ξ,|s′0−s0|<δ,wf (ξ)>0

ηξ′ , (3.2)

where s′0 is the initial state of ξ′ and Ξ is the set of all demonstrations. We set the
highest expected return for an initial state as the highest expected return of neighboring
initial states of feasible trajectories (wf (ξ) > 0), because the rectify function will be
influenced by infeasible trajectories with high expected returns otherwise. Using this
rectifying function frec, we can compute the rectified confidence, which induces more
diverse optimal demonstrations.

We emphasize that we do not assume access to the reward function, and only
assume access to the expected return of a trajectory similar to prior work that leverages
a given confidence measure for each demonstration [48].

3.2.2 Algorithm

Using the defined notions of confidence, we now can compute the final score of how
useful each state transition is for learning a policy for the target agent. We then
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re-weigh each state transition in the demonstration by the score w(ξ). The weighting-
based work for learning from imperfect demonstrations often directly incorporates the
weight in the imitation loss [48]. However, such re-weighing can suffer from numerical
issues, when the weight of some state transitions is too large. Instead, for more stable
training, we define a distribution pw over state transitions based on the score w(ξ).
For every state-action pair in a demonstration from the dataset, we assign a weight
wi (for the i-th state-action pair) equal to the weight assigned to the trajectory w(ξ),
i.e., ∀i wi = w(ξ). We compute a probability distribution over the state transitions
as pwi

= wi∑
i wi

. Using the sampling distribution pw, we can embed our method into
any imitation learning algorithm to enable it to learn from imperfect demonstrations
of various dynamics.

As an example, we derive the loss for generative adversarial imitation learning
(GAIL) [20]. We modify the loss in Eqn (3.3) as follows:

LGAIL(θD) = E(s,a)∈π[− logD(s, a)] + E(s,a)∈pw [− log(1−D(s, a))]. (3.3)

. The loss to update the policy in Eqn (2.3) does not change.
Note that given a trajectory, we assign equal scores to each state transition within

the trajectory, which fails to emphasize the most important transitions. However, this
is not a problem as the key transitions repeatedly appear in high-score trajectories,
and every time they appear, their sampling probability pw accumulates. This ensures
the key transitions are considered.

3.3 Confidence-Aware Imitation Learning

However, the above confidence value relies on the reward value, which requires a well-
defined reward function to annotate. Such a reward function does not exist in many
environments. Thus, in our method, we aim to relax the strong assumption of the
reward function. We propose a general framework to learn from demonstrations with
varying optimality that jointly learns the confidence score and a well-performing policy.
Our approach, Confidence-Aware Imitation Learning (CAIL) learns a well-performing
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Figure 3.2: Confidence-Aware Imitation Learning. The demonstrations are shown in
the orange box drawn from the demonstration policy: ξ1, . . . , ξD ∼ πd. The confidence
learning component and the outer loss are shown in blue. The confidence w reweights
the distribution of state-action pairs in the demonstration set, and then the imitation
learning model Fθ learns a well-performing policy and new parameters θ with the
confidence-reweighted distribution using the inner loss (imitation loss) shown in green.
Next iteration, the updated Fθ generates new trajectories that are then evaluated by
the outer loss and potentially other evaluation data (e.g. partial ranking of trajectories)
to update confidence.

policy from confidence-reweighted demonstrations while using an outer loss to track
the performance of our model and to learn the confidence. We only rely on the ability
to evaluate the performance of imitation learning, which is much easier than accessing
the reward function.

Given the demonstration set Ξ, we need to assess our confidence in each demon-
stration. To achieve learning confidence over this mixture of demonstrations, we rely
on the ability to evaluate the performance of imitation learning. This can be achieved
by using an evaluation loss trained on evaluation data, ΞE (as shown in Fig. 3.2). In
our implementation, we rely on a small number of rankings between trajectories as
our evaluation data: ΞE = ηξ1 ≥ · · · ≥ ηξm . To summarize, our framework takes a set
of demonstrations with varying optimality Ξ as well as a limited amount of evaluation
data ΞE along with an evaluation loss to find a well-performing policy. Note that
unlike prior work [47], we do not assume that optimal demonstrations always exist in
the demonstration set, and CAIL can still extract useful information from Ξ while
avoiding the negative effects of non-optimal demonstrations.
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In our framework, we adopt an imitation learning algorithm with a model Fθ

parameterized by θ and a corresponding imitation learning loss Lin, which we refer to
as inner loss (as shown in Figure 3.2). We assign each state-action pair a confidence
value indicating the likelihood of the state-action pair appearing in the well-performing
policy. The confidence can be defined as a function mapping from a state-action pair to
a scalar value w : S ×A → R. We aim to find the optimal confidence assignments w∗

to reweight state-action pairs within the demonstrations. We then conduct imitation
learning from the reweighted demonstrations using the inner imitation loss Lin to
learn a well-performing policy. Here, we first define the optimal confidence w∗ and
describe how to learn it automatically.
Defining the Optimal Confidence. We define the distribution of state-action pairs
visited by a policy π based on the occupancy measure ρπ : S × A → R: ρπ(s, a) =

π(a|s)∑∞
t=0 γ

tP (st = s|π), which can be explained as the un-normalized distribution
of state transitions that an agent encounters when navigating the environment with
the policy π. We can normalize the occupancy measure to form the state-action
distribution: pπ(s, a) = ρπ(s,a)∑

s,a ρπ(s,a)
. Recall that πd is the policy that the demonstrations

are derived from, which can potentially be a mixture of different expert, suboptimal, or
even malicious policies. We reweight the state-action distribution of the demonstrations
to derive a new state-action distribution, which corresponds to another policy πnew:
pπnew(s, a) = w(s, a)pπd

(s, a). Our goal is to find the optimal confidence w∗ that ensures
the derived policy πnew maximizes the expected return:

w∗(s, a) = argmax
w

ηπnew . (3.4)

With such w∗(s, a), we can conduct imitation learning from the reweighted demon-
strations to maximize the expected return with the provided demonstrations.
Learning the Confidence. We will learn an estimate of the confidence score w

without access to any annotations of the ground-truth values based on optimizing two
loss functions: The inner loss and the outer loss. The inner loss Lin is accompanied
with the imitation learning algorithm encouraging imitation, while the outer loss Lout

captures the quality of imitation learning, and thus optimizing it finds the confidence
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value that maximizes the performance of the imitation learning algorithm.
Specifically, we first learn the imitation learning model parameters θ∗ that minimize

the inner loss:
θ∗(w) = argmin

θ
E(s,a)∼w(s,a)pπd(s,a)

Lin(s, a; θ, w) (3.5)

We note that the inner loss Lin(s, a; θ, w refers to settings where (s, a) is sampled from
the distribution w(s, a)pπd(s,a), and hence implicitly depends on w. Thus we need to
find the optimal w∗, which can be estimated by minimizing an outer loss Lout:

w∗
out = argmin

w
Lout(θ

∗(w)). (3.6)

This evaluates the performance of the underlying imitation learning algorithm with
respect to the reward with limited evaluation data ΞE (e.g. limited rankings if we
select a ranking loss as our choice of Lout; which we will discuss in detail in Sec. 3.3.3).

3.3.1 Optimization of Outer and Inner Loss

We design a bi-level optimization process consisting of an inner-level optimization
and an outer-level optimization to simultaneously update the confidence w and the
model parameters θ. Within the outer-level optimization, we first pseudo-update the
imitation learning parameters to build a connection between w and the optimized
parameters θ′ with the current w. We then update w to make the induced θ′ minimize
the outer loss Lout in Eqn. (3.6). The inner-level optimization is to find the imitation
learning model parameters that minimize inner loss Lin with respect to the confidence
w. We introduce the details of the optimization below. We use τ to denote the
number of iterations. Note that the losses in this section are all computed based on
the expectation over states and actions.
Outer-Level Optimization: Updating w. Let wτ be the confidence at time τ .
Using wτ , we first pseudo-update the imitation learning parameters θ using gradient
descent. Here pseudo-update means that the update aims to compute the gradients of
w but does not change the value of θ. Let θ′0 = θτ be the current imitation learning
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model parameters, and we update θ′ as:

θ′t+1 = θ′t − µ∇θ′Lin(s, a; θ
′
t, wτ ), (3.7)

where µ is the learning rate, t is the pseudo-updating time step for θ′. We will update
θ′ with respect to the fixed wτ after convergence of Eqn. (3.7). After updating θ′, we
now update w using gradient descent with the outer loss Lout from Eqn. (3.6):

wτ+1 = βτ − α∇wLout(θ
′), (3.8)

where α is the learning rate for updating w. Intuitively, updating w as in Eqn. (3.8)
aims to find the fastest update direction of θ′ for decreasing the outer loss Lout. Though
we compute gradients of gradients for w here, w is only a one-dimension scalar for each
state-action pair and within each iteration of training, we only sample a mini-batch
of thousands of state pairs for the update. Thus, within each iteration, the total
dimension of w is small, and computing the gradient of the gradient is not costly.
Inner-Level Optimization: Updating θ. With the updated wτ+1, we now will
update θ using gradient descent, where we denote the initialization as θ0 = θτ .

θt+1 = θt − µ∇θLin(s, a; θt, wτ+1). (3.9)

After convergence, we set θτ+1 = θ. With the two updates introduced above (outer
and inner optimization), we finish one update iteration by setting wτ to wτ+1 using
the converged value from Eqn. (3.8) and θτ to θτ+1 using the converged value from
Eqn. (3.9).

In each iteration of the above optimization—in the steps of pseudo-updating
and the steps of updating the imitation learning model—multiple gradient steps are
required for convergence, meaning that there is a nested loop of gradient descent
algorithms. The nested loop costs quadratic time and is inefficient, especially for deep
networks. To further accelerate the optimization, we propose an approximation, which
only updates θ once in the pseudo-updating and the updating steps. Therefore, the
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new updating rule can be formalized as follows:

θ′τ+1 = θτ − µ∇θLin(s, a; θτ , wτ ),

wτ+1 = wτ − α∇wLout(θ
′
τ+1),

θτ+1 = θτ − µ∇θLin(s, a; θτ , wτ+1).

(3.10)

3.3.2 Theoretical Results

We analyze the convergence of the proposed bi-level optimization algorithm for the
CAIL framework and derive the following theorems. We provide detailed proofs of
these theorems in the Appendix.

Theorem 1. (Convergence) Suppose the outer loss Lout is Lipschitz-smooth with
constant L, the inequality

∇θLout(θτ+1)
⊤∇θLin(θτ , wτ+1) ≥ C||∇θLin(θτ , wτ+1)||2 (3.11)

holds for a constant C ≥ 0 in every step τ ,1 and the learning rate satisfies µ ≤ 2C
L

,
then the outer loss decreases along with each iteration: Lout(θτ+1) ≤ Lout(θτ ), and the
equality holds if ∇wLout(θτ ) = 0 or θτ+1 = θτ .

Remark 1. The inequality in the assumption of Theorem 1 (Eqn. 3.11) indicates
that the directions of the gradients of Lout and Lin with respect to θ should be close.
Intuitively only when the two gradient directions align, we can decrease the evaluation
loss Lout by updating θ with Lin.

Theorem 1 ensures that the confidence and the imitation learning parameters
monotonically decrease the outer loss. When the gradient of the outer loss with
respect to w is zero, w converges to the optimal confidence that minimizes the
outer loss, i.e., , w∗ in Eqn. (3.4). With the optimal confidence, we can learn a
well-performing policy from more useful demonstrations by reweighting them. Thus,
the learned imitation model induces lower outer loss (has higher quality) than the

1We remove (s, a) in Lin for notation simplicity.
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imitation learning model learned from the original demonstrations in the dataset
without reweighting.

Theorem 2. (Convergence Rate) Under the assumptions in Theorem 1, let

g(θ, β) = θ − µ∇θLin(s, a; θ, β) (3.12)

We assume that Lout(g(θ, β)) is Lipschitz-smooth w.r.t. β with constant L1, Lin and
Lout have σ-bounded gradients, and the norm of ∇β∇θLin(θ; β) is bounded by σ1. L is
the Lipschitz-smooth constant for Lout w.r.t. g(θ, β) as shown in Theorem 1. Consider
the total training steps as T , we set α = C1√

T
, for some constant C1 where 0 < C1 ≤ 2

L1

and µ = C2

T
for some constant C2. Then:

min
1≤τ≤T

E[||∇βLout(θτ )||2] ≤ O

(
1√
T

)
. (3.13)

Remark 2. The assumptions of Theorem 2 are Lipschitz-smoothness and bounded
first-order and second-order gradients of Lin and Lout, which are satisfied for typical
Lin and Lout such as the cross-entropy loss of AIRL and the ranking loss in our
implementation of CAIL in Section 3.3.3.

With the bound on the convergence rate, the gradient of the outer loss with respect
to β is gradually getting close to 0, which means that β gradually converges to the
optimal confidence β∗ that minimizes the outer loss if Lout is convex with respect to β.

3.3.3 An Implementation of CAIL

To implement CAIL, we need to adopt an imitation learning algorithm whose imitation
loss will be the inner loss. We also need to design an outer loss on the imitation
learning algorithm to evaluate the quality of imitation given some evaluation data DE

(e.g. partial ranking annotations).
Based on the above considerations, as an instance of the implementation of CAIL,

we use Adversarial Inverse Reinforcement Learning (AIRL) [13] as our imitation
learning model. We use the imitation loss of AIRL as the inner loss and a ranking loss
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(based on a partial ranking of trajectories) as the outer loss. AIRL and the ranking
loss are compatible since AIRL can induce the reward function from the discriminator
within the model, and the ranking loss can penalize the mismatches of the trajectory
rankings computed by the induced reward function and the ground-truth rankings
from the evaluation data DE. Furthermore, the implementation only requires the
ranking of a subset of demonstrations {ξi}mi=1 ⊂ Ξ, i.e., , DE = ηξ1 ≥ ηξ2 ≥ · · · ≥ ηξm ,
which is much easier to access than the exact confidence value annotations [5, 33]
since confidence not only reflects the rankings of different demonstrations but also
how much one demonstration is better than the other.

AIRL consists of a policy π serving as a generator parameterized by θπ as the
policy, and a discriminator parameterized by θD. The generator and the discriminator
are trained in an adversarial manner as in [15] to match the occupancy measures of
the policy and the demonstrations. We write the loss Lin as:

Lin(θD, w) = E(s,a)∼w(s,a)pπd(s,a)
[− logD(s, a)] + E(s,a)∼π[− log(1−D(s, a))], (3.14)

Lin(θπ) = E(s,a)∼π[logD(s, a)− log(1−D(s, a))], (3.15)

where Lin(θD, w) is the inner loss for the discriminator, Lin(θπ) is the inner loss for
the generator. The discriminator D is learned by minimizing the loss Lin(θD, w),
which aims to discriminates the state-action pair (s, a) drawn from π and the state-
action pair (s, a) drawn from w(s, a)pπd(s,a). The generator parameter θπ is trained to
minimize the loss Lin(θπ) with policy optimization methods. This enables the learned
policy π to generate state-action pairs that are similar to the state transitions in the
demonstrations.

For the outer loss, AIRL approximates the reward function by the discriminator
parameters, i.e., R′

θD
. We compute η′ξi =

∑N
t=0 γ

tR′
θD
(st, at) as the expected return of

a trajectory using the reward R′
θD

. Then we penalize the mismatches of the rankings
derived by η′ξi and the ground-truth rankings:

Lout(θD) =
∑
i

∑
j>i

RK
[
η′ξi , η

′
ξj
; I[ηξi > ηξj ]

]
, (3.16)
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where I[ηξi > ηξj ] is 1 if ηξi > ηξj and otherwise is −1. RK is defined as a revised
version of the widely-used margin ranking loss with margin as 0:

RK
[
η′ξi ; η

′
ξj
, ηξi , ηξj

]
=

max(0,−I[ηξi > ηξj ](η
′
ξi
− η′ξj)), |η′ξi − η′ξj | > ϵ

max(0,
1

4ϵ
(I[ηξi > ηξj ](η

′
ξi
− η′ξj)− ϵ)2), |η′ξi − η′ξj | ≤ ϵ

(3.17)
We revised the original margin ranking loss within a ϵ range around the point of
(η′(ξi)− η′(ξj)) = 0 to make it Lipschitz smooth. If we adopt a small enough ϵ, the
functionality of the revised marginal ranking loss is close to the original one. In all
the experiments, we use ϵ = 10−5.

3.3.4 Experiments

In this section, we conduct experiments on the implementation of CAIL in Sec. 3.3.3.
We verify the efficacy of the CAIL in simulated and real-world environments. We
report the results on various compositions of demonstrations with varying optimality.
The code is available on our website2

We conduct experiments in four environments including two MuJoCo environments
(Reacher and Ant) [45] in OpenAI Gym [6], one Franka Panda Arm3 simulation
environment, and one real robot environment with a UR5e robot arm4.
Reacher. In the Reacher environment, the agent is an arm with two links and one
joint, and the end effector of the arm is supposed to reach a final location. For each
step, the agent is penalized for the energy cost and the distance to the target.

We collect 200 trajectories in total for training, where each trajectory has 50

interaction steps. 5% of the trajectories are annotated with rankings. We collect 5

trajectories for testing. We run the experiment for 5 runs and compute the mean
and the standard deviation of the expected return. The average time for each run is
1,291s.
Ant. In the Ant environment, the agent is an ant with four legs and each leg has

2https://sites.google.com/view/cail
3https://www.franka.de
4https://www.universal-robots.com/products/ur5-robot

https://sites.google.com/view/cail
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two links and two joints. Its goal is to move forward in the x-axis direction as fast as
possible. For each step, the agent is rewarded for moving fast in the x-axis direction
without falling, while it is penalized for the energy cost. If the ant fails to stand, the
trajectory will be terminated.

We collect 200 trajectories in total for training, where each trajectory has at most
1000 interaction steps. 5% of the trajectories are annotated with rankings. We collect
5 trajectories for testing. We run the experiment for 5 runs and compute the mean
and the standard deviation of the expected return. The average time for each run is
17,140s.
Simulated Robot Arm. In this environment, there is a Franka Panda Arm that
is supposed to pick up a bottle, avoid the obstacle, and put the bottle on a target
platform. For each step, the agent is penalized for the energy cost and the distance
to the target. If the agent drops the bottle or hits the target, it will receive a
large negative reward and the trajectory will be terminated. If the agent succeeds
to make the bottle stand on the target, the trajectory will be terminated too, so
that the arm will no longer receive penalization. The reachable region of the arm is
[0.20, 0.80] in x-axis, and [−0.35, 0.35] in y-axis. The initial position of the bottle is
sampled in [0.68, 0.72]× [−0.05, 0] and the initial position of the target is sampled in
[0.28, 0.32]× [−0.32,−0.28]. The action space is the velocity of the end-effector, and
the maximum velocity is 1 in each direction.

We collect 200 trajectories in total for training, where each trajectory has at most
2000 interaction steps. 5% of the trajectories are annotated with rankings. We collect
5 trajectories for testing. We run the experiment for 5 runs and compute the mean
and the standard deviation of the expected return. The average time for each run is
44,731s.
Real Robot Arm. In this environment, we use a real UR5e robot arm in a similar
setting as the simulation environment.

We collect 200 trajectories in total for training, where each trajectory has at most
2000 interaction steps. 5% of the trajectories are annotated with rankings. We collect
5 trajectories for testing. We run the experiment for 5 runs and compute the mean
and the standard deviation of the expected return. The average time for each run is
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141,699s.

Source of Demonstrations

For MuJoCo environments, following the demonstration collecting method in [47],
we train a reinforcement learning algorithm and select four intermediate policies as
policies with varying optimality and the converged policy as the optimal policy, so
that the demonstrations range from worse-than-random ones to near-optimal ones.
We draw 20% of demonstrations from each policy. For the RL algorithm, we use
SAC [18] for the Reacher environment and PPO [40] for the Ant environment. For
the Franka Panda Arm simulation and the real robot environment with UR5e, we
hand-craft demonstrations with optimality varying continuously from near-optimal
ones to unsuccessful ones to approximate the demonstration collecting process from
demonstrators with different levels of expertise.

Reward Design

To evaluate the proposed CAIL and other methods, we use the expected return for
all the environments, which is the discounted cumulative reward of a trajectory. For
the Reacher and the Ant environments, we use the reward function in their original
implementation in Gym5. For the Simulated Robot Arm and the Real Robot Arm
environments, we define a reward as follows: Assume that the action of the robot arm
(the velocity of the end-effector) is a, the distance between the bottle and the target is
d, the distance between the bottle’s initial position and the target is dinit, then at each
step, the robot will receive a reward of −0.02a

d2init
− 0.05d. If the robot drops the bottle

or the obstacle is moved, the robot will receive a reward of −2000 and the trajectory
will be terminated. In the robot arm environments (both simulated and real), we also
use the success rate as another metric to evaluate the rate at which the robot arm
successfully moves the bottle to the goal area without colliding with the obstacle.

5https://github.com/openai/gym
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Implementation Details

Baselines. We compare CAIL with the most relevant works in our problem setting
including the state-of-the-art standard imitation learning algorithms: GAIL [21],
AIRL [13], imitation learning from suboptimal demonstration methods including two
confidence-based methods, 2IWIL and IC-GAIL [47], and three ranking-based methods,
T-REX [7], D-REX [8], and SSRR [11]. GAIL and AIRL learn directly from the
mixture of optimal and non-optimal demonstrations. T-REX needs demonstrations
paired with rankings, so we provide the same number of rankings as our approach. For
D-REX and SSRR, we further generate rankings by disturbing demonstrations as done
in their papers. For 2IWIL and IC-GAIL—that need a subset of demonstrations labeled
with confidence—we label the subset of ranked demonstrations with evenly-spaced
confidence, i.e., , the highest expected return as confidence 1, and the lowest expected
return as 0. This is a reasonable approximation of the confidence score with no prior
knowledge available. For a fair comparison, we re-implement 2IWIL with AIRL as its
backbone imitation learning method. For the RL algorithm in T-REX, D-REX, and
SSRR, we also use PPO. DPS [33] requires interactively collecting demonstrations and
the approach in Cao et al. [10] requires the ground truth reward of demonstrations,
which are both not implementable under the assumptions in our setting, so we do not
include them.

We implement CAIL based on a PPO-based AIRL6. The actor and the critic
are neural networks with two hidden layers with size 64 and Tanh as the activation
function, and the discriminator is a neural network with two hidden layers with size 100
and ReLU as the activation function. We use ADAM to update the imitation learning
model and the Stochastic Gradient Descent method (SGD) to update the confidence.
We implement our method in the PyTorch framework [34]. We train each algorithm 10

times with different random seeds and record how the expected return and the standard
deviation vary during training. While testing the return, we run the algorithm for 100

6We use the AIRL implementation in this repository: https://github.com/toshikwa/
gail-airl-ppo.pytorch. The repository uses a slightly different implementation from the original
paper, which uses logD(s, a) as the reward to update the policy instead of R(s, a) in Eqn. (2.4).
This achieves a more stable performance than the original AIRL in the repository

https://github.com/toshikwa/gail-airl-ppo.pytorch
https://github.com/toshikwa/gail-airl-ppo.pytorch
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episodes. While implementing Eqn. (11), we normalize β so that their mean value is 1,
i.e. for the first part of Eqn. (11), we use

∑
(s,a)∈Ξ

(
− nβ(s,a)∑

(s,a)∈Ξ β(s,a)

)
log(D(s, a)), where

n is the number of state-action pairs in Ξ. All the experiments in all environments
are run on one Intel(R) Xeon(R) Gold 6244 CPU @ 3.60GHz with 10G memory.

Results

Reacher and Ant. In the Reacher, the end effector of the arm is supposed to reach
a final location. Figure 3.3(a) shows the optimal trajectories of the joint and the end
effector in green, which illustrates the policy reaching the location with the minimum
energy cost, and the trajectories with lower optimality in red and orange, where the
agent just spins around the center and wastes energy without reaching the target. We
collect 200 trajectories in total, where each trajectory has 50 interaction steps.

In Ant, the agent has four legs, each with two links and two joints. Its goal is to move
in the x-axis direction as fast as possible. Figure 3.3(b) illustrates the demonstrated
trajectories, where green shows the optimal one, and red shows suboptimal trajectories
(darker colors show lower optimality). In optimal demonstrations, the agent moves
quickly along the x-axis, while in suboptimal ones, it moves slowly in other directions.
We collect trajectories with 200,000 interaction steps in total.

As shown in Figure 3.3(e) and 3.3(f), CAIL achieves the highest expected return
compared to the other methods and experiences fast convergence. For Reacher, the
p-value7 between CAIL and the closest baseline method, T-REX, is 5.4054 × 10−6

(statistically significant). For Ant, the p-value between CAIL and the closest baseline
method, 2IWIL, is 0.1405. CAIL outperforms standard imitation learning methods,
GAIL and AIRL, because CAIL selects more useful demonstrations, and avoids the
negative influence of harmful demonstrations. We observe that 2IWIL and IC-GAIL
do not perform well because neighboring demonstrations in a given ranking are not
guaranteed to have the same distance in terms of confidence score and thus the
evenly-spaced confidence values derived from rankings are likely not accurate. All the
ranking-based methods do not perform well. For T-REX, the potential reason can be

7All p-values are computed by the student’s t-test and the null hypothesis is the performance of
CAIL is equal to or smaller than the baseline methods.
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that the rankings of a subset of demonstrations are not enough to learn a generalizable
reward function covering states. For D-REX and SSRR, the automatically generated
rankings can be incorrect since we also have unsuccessful demonstrations— which can
at times be worse than random actions—and perturbing such demonstrations is not
guaranteed to produce demonstrations that imply rankings.

(a) Reacher Illustration (b) Ant Illustration (c) Simulation Illustra-
tion

(d) Real Robot Illustra-
tion

0 1 2
Number of Interaction Steps (1e6)

−100

−80

−60

−40

−20

Ex
pe

ct
ed

 R
et

ur
n

(e) Reacher Results

0 5 10 15 20
Number of Interaction Steps (1e6)

−2000

0

2000

4000

Ex
pe

ct
ed

 R
et

ur
n

(f) Ant Results

0 20 40 60 80
Number of Interaction Steps (1e6)

−2500

−2000

−1500

−1000

−500

0
Ex

pe
ct

ed
 R

et
ur

n

(g) Simulation Results

−2000

−1500

−1000

−500

0

Ex
pe

ct
ed

 R
et

ur
n

(h) Real Robot Results
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Figure 3.3: (a) Reacher, (b) Ant, (c) Simulated Panda Robot Arm, (d) Real UR5e
Robot Arm. In (a-d), the green trajectories indicate the optimal demonstrations,
while the red and orange trajectories indicate demonstrations with varying optimality.
(e-g) The expected return with respect to the number of interaction steps. (h) The
expected return of the converged policies for UR5e Robot Arm.

Robot Arm. We further conduct experiments in more realistic environments: a
simulated Franka Panda Arm and a real UR5e robot arm. As shown in Figure 3.3(c)
and 3.3(d), we design a task to let the robot arm pick up a bottle, avoid the obstacle,
and put the bottle on a target platform. In the optimal demonstrations in green,
the arm takes the shortest path to avoid the obstacle, and puts the bottle on the
target, while in suboptimal ones in red (where, similar to before, the brightness of the
trajectories indicates their optimality), the arm detours, does not reach the target,
and even at times collides with the obstacle. The suboptimal demonstrations represent
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(a) Varying Optimality
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Figure 3.4: (a-b) The Expected Return with respect to different optimality of demon-
strations in the Reacher environment, where the different optimality are created by
varying the optimality of non-optimal demonstrations and varying the ratio of optimal
demonstrations. (c) Results for learning from only non-optimal demonstrations in the
Ant environment.

a wide range of optimality from near-optimal ones (small detours) to adversarial ones
(colliding). We vary the initial position of the robot end-effector and the goal position
within an initial area and goal area respectively. For both simulated and real robot
environments, we collect trajectories with 200,000 interaction steps in total.

As shown in Figure 3.3(g) and 3.3(h), CAIL outperforms other methods in expected
return in both the simulated and real robot environments. For the simulated robot arm
environment, the p-value between CAIL and the closest baseline, 2IWIL, is 0.0974. For
the real robot environment, the p-value between CAIL and the closest baseline, AIRL,
is 0.0209 (statistically significant). In particular, in the real robot environment, CAIL
achieves a low standard deviation while other methods especially AIRL, IC-GAIL,
D-REX, and GAIL suffer from an unstable performance. The results demonstrate
that CAIL can work stably in the real robot environment. We report the success
rate—rate that the robot successfully reaches the target within the time limit without
colliding with the obstacle—and videos of sample policy rollouts in the supplementary
materials.
Demonstrations with Different Optimality. We show the performance of dif-
ferent methods with demonstrations at different levels of optimality in the Reacher
environment. We fix 20% of the total demonstrations to be optimal and make the
remaining 80% demonstration drawn from the same suboptimal policy. We vary the
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optimality of this policy to investigate the performance change with respect to different
optimalities. Another way to obtain different optimality is to vary the ratio of optimal
demonstrations. We show the results of both varying optimality in Figure 3.4(a)
and 3.4(b) respectively. We observe that CAIL consistently outperforms or performs
comparably to other methods with demonstrations at different optimality. Also, CAIL
performs more stably while the baselines suffer from a performance drop at specific
optimality levels.
Learning from Only Non-optimal Demonstrations. We verify that CAIL can
also learn from solely non-optimal demonstrations without relying on any optimal
demonstrations. We remove the optimal demonstrations in the Ant environment
and use the remaining demonstrations to conduct imitation learning. As shown in
Figure 3.4(c), CAIL still achieves the best performance among all the methods, which
demonstrates that even with all demonstrations being non-optimal, CAIL still can
learn useful knowledge from those demonstrations with higher expected return and
induce a better policy. The highest p-value between CAIL and the closest baseline
(2IWIL) is 0.0067, which indicates the performance gain is statistically significant.
We observe that the performance of AIRL first increases and then decreases. This is
because even though the demonstrations are suboptimal, there are potentially optimal
state-action transitions leading to the initial high performance. However, at this early
training stage, the AIRL model does not converge yet and the model parameters
can still change rapidly. After training a sufficient number of steps, the AIRL model
observes both useful and less useful transitions and converges to the average return of
all the demonstrations.
Numerical Comparison. We provide the numerical comparison of CAIL and the
baseline methods in Table 3.1. The results correspond to the results in Fig. 2 in the
main text. We can observe that CAIL outperforms all the baseline methods in all the
environments and the margin between CAIL and the best-performing policy is much
closer than the margin between baseline methods and the best-performing policy.
Success Rate. We report the success rate among 100 trials of different methods in
Table 3.2. We observe that for both simulated and real robot environments, CAIL
achieves the highest success rate. Though 2IWIL also achieves a high success rate;
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Table 3.1: The converged expected return of all the methods in Mujoco Reacher
and Ant, Simulated Franka Panda Robot Arm, and the Real UR5e Robot Arm
environments. We provide numerical results for a clearer comparison.

Method Reacher Ant Simulated Robot Real Robot

CAIL -7.82±1.52 3825.64±940.23 -62.95±50.64 -34.33±1.24
2IWIL -23.06±3.80 3473.85±271.70 -120.62±122.79 -52.45±7.18

IC-GAIL -55.36±5.05 1525.67±747.88 -349.51±342.60 -550.24±657.84
AIRL -25.92±2.34 3016.13±1028.89 -236.95±230.50 -597.82±752.15
GAIL -60.86±3.30 998.23±387.83 -527.60±452.38 -532.85±664.42

T-REX -66.37±21.30 -1867.93±318.34 -1933.94±380.83 -2003.67±32.77
D-REX -78.10±14.92 -2467.78±135.18 -1817.24±481.67 -1538.10±703.27
SSRR -70.04±14.74 -105.35±210.84 -2077.62±58.76 -2154.21±168.09
Oracle -4.31 4787.23 -35.36 -31.06

Table 3.2: Success rate (%) among 100 trials of all the methods in the simulated and
real robot environments.

Method CAIL 2IWIL IC-GAIL AIRL GAIL T-REX D-REX SSRR

Simulated Robot 100 100 81 87 31 0 0 0
Real Robot 100 83 7 33 20 0 0 0

however, it induces trajectories with longer detours and thus has a lower expected
return.

Table 3.3: The performance with respect to the size of the ranking dataset.

Label Ratio 1% 2% 5% 10% 20% 50% 100%

2IWIL −33.5± 4.9 −34.4± 3.2 −23.3± 4.1 −27.7± 6.7 −24.5± 3.0 −30.0± 2.7 −25.2± 6.9
IC-GAIL −56.4± 10.1 −53.7± 4.0 −61.0± 5.0 −54.1± 6.0 −58.8± 3.4 −44.6± 8.3 −57.1± 3.7
T-REX −83.7± 18.6 −85.8± 15.3 −82.3± 10.2 −73.2± 21.6 −91.8± 15.4 −38.6± 35.8 −27.2± 37.2
CAIL −8.0± 2.4 −8.7± 3.6 −7.3± 2.0 −8.1± 2.9 −7.1± 1.7 −7.5± 2.3 −7.8± 3.0

Ablating the size of ranking dataset We provide results of CAIL and the compared
methods including 2IWIL, IC-GAIL, and T-REX with varying levels of supervision.
We do not include GAIL, AIRL, D-REX, and SSRR in this ablation since they do not
require any supervision. We conduct experiments in the Reacher environment and
vary the ratio of demonstrations labeled with ranking. The agents are provided with
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Figure 3.5: (a) The visualization of confidence for demonstrations drawn from policies
with different optimality. There are 5 policies with different optimality, where the
darker color means the policy has a higher expected return. (b-c) The expected return
with varying hyper-parameters α and µ.

200 trajectories, and the ratios of labeled demonstrations are 1%, 2%, 5%, 10%, 20%,
50%, 100%. The average trajectory rewards and the standard deviations are shown in
Table 3.3. CAIL outperforms all the other methods with a large gap in all settings,
even in the setting with only 1% labeled demonstrations, i.e., only two trajectories are
labeled, which is the minimum label we can have for ranking. 2IWIL and IC-GAIL,
however, do not perform well, and there is no clear increase in performance as the
label ratio increases. This is because what they need is labeled confidence, which is a
much stronger type of supervision than ranking. The confidence cannot be accurately
recovered when only given rankings. T-REX does not perform well either, but it is
getting better as the ratio of labels increases. This experimentally proves that T-REX
needs much more data than CAIL to learn a reward function and CAIL can use the
demonstrations more efficiently.
Visualization of the Confidence In our experiments, we have 5 sets of demonstra-
tions collected from 5 different policies, where each set of demonstrations has different
average returns. So we can learn different average confidence values for each different
set of demonstrations. The larger the average return, the larger the average confi-
dence. In our framework, we learn confidence for each state-action pair. We visualize
the un-normalized confidence learned by CAIL of these 5 set of demonstrations in
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Fig. 3.5(a), where the darker color means the demonstrations have higher expected
returns. We observe that the darker color bar has higher confidence, which indicates
that CAIL-learned confidence matches the optimality of the demonstrations.
Hyper-parameter Sensitivity. We investigate the sensitivity of hyper-parameters
including the two learning rates α and µ. We aim to demonstrate two points: (1)
The proposed approach can work stably with the hyper-parameters falling into a
specific range; (2) If the hyper-parameters are too large or too small, the performance
can drop, which means that tuning the two hyper-parameters are necessary for the
performance of our algorithm. We conduct experiments in the Ant environment. As
shown in Figure 3.5(b) and 3.5(c), the proposed approach work stably with α in the
range [10−3, 100.0], and with µ in the range [3× 10−5, 3× 10−4]. When α and µ are
too large or too small, the performance drops. The observations demonstrate the two
points introduced above.

3.4 Adversarial Confidence Transfer

To derive the confidence value, in Section 3.2, we use the reward value of each
demonstration trajectory as the annotation while in Sec. 3.3, we use the ranking of
trajectories. However, for complex environments, large-scale annotations are required
to cover the whole state-action space, which is labor-intensive and expensive to obtain.
Furthermore, the annotations can often contain a significant amount of noise when
collected through crowdsourcing platforms.

In this section, instead of using manually annotated confidence over demonstrations,
we leverage confidence annotations in a different but related environment—the source
environment. As shown in Fig. 3.6, the source environment may have a different
state-action space from the target environment—the environment we are operating in.
The source environment and the target environment should have a correspondence
mapping between state-action pairs [52].

We assume that collecting offline demonstrations along with their confidence
annotations is easy in the source environment. As an example, the source and
target environments can be a simulated robot and a real robot respectively, or two



CHAPTER 3. SUBOPTIMAL DEMONSTRATIONS 32

Source Demos:  Ξ!"#

Target

Demonstrations

Source

csrc
<latexit sha1_base64="afcQzZ1L1SOhI/SNLGC0Rt5LVko=">AAAB83icbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YA2ls120y7dbMLuRCyhf8OLB0W8+me8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKzucZxwP6IDJULBKFqpyx66yJ8wM5pNeqWyW3FnIMvEy0kZctR7pa9uP2ZpxBUySY3peG6CfkY1Cib5pNhNDU8oG9EB71iqaMSNn81unpBTq/RJGGtbCslM/T2R0ciYcRTYzoji0Cx6U/E/r5NieOVnQiUpcsXmi8JUEozJNADSF5ozlGNLKNPC3krYkGrK0MZUtCF4iy8vk2a14p1XqncX5dp1HkcBjuEEzsCDS6jBLdShAQwSeIZXeHNS58V5dz7mrStOPnMEf+B8/gCrHJIY</latexit>Demonstrations w/

ctar
<latexit sha1_base64="kkE4WodyDL5Dwd2KFznLjokROjs=">AAAB83icbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YA2ls120y7dbMLuRCyhf8OLB0W8+me8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKzucZxwP6IDJULBKFqpyx66yJ8wQ6onvVLZrbgzkGXi5aQMOeq90le3H7M04gqZpMZ0PDdBP6MaBZN8UuymhieUjeiAdyxVNOLGz2Y3T8ipVfokjLUthWSm/p7IaGTMOApsZ0RxaBa9qfif10kxvPIzoZIUuWLzRWEqCcZkGgDpC80ZyrEllGlhbyVsSDVlaGMq2hC8xZeXSbNa8c4r1buLcu06j6MAx3ACZ+DBJdTgFurQAAYJPMMrvDmp8+K8Ox/z1hUnnzmCP3A+fwCpiJIX</latexit>

Target Confidence
Predictor

Reweight Demonstrations
Imitation Learning

Target

Demonstrations

Source

csrc
<latexit sha1_base64="afcQzZ1L1SOhI/SNLGC0Rt5LVko=">AAAB83icbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YA2ls120y7dbMLuRCyhf8OLB0W8+me8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKzucZxwP6IDJULBKFqpyx66yJ8wM5pNeqWyW3FnIMvEy0kZctR7pa9uP2ZpxBUySY3peG6CfkY1Cib5pNhNDU8oG9EB71iqaMSNn81unpBTq/RJGGtbCslM/T2R0ciYcRTYzoji0Cx6U/E/r5NieOVnQiUpcsXmi8JUEozJNADSF5ozlGNLKNPC3krYkGrK0MZUtCF4iy8vk2a14p1XqncX5dp1HkcBjuEEzsCDS6jBLdShAQwSeIZXeHNS58V5dz7mrStOPnMEf+B8/gCrHJIY</latexit>Demonstrations w/

ctar
<latexit sha1_base64="kkE4WodyDL5Dwd2KFznLjokROjs=">AAAB83icbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YA2ls120y7dbMLuRCyhf8OLB0W8+me8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKzucZxwP6IDJULBKFqpyx66yJ8wQ6onvVLZrbgzkGXi5aQMOeq90le3H7M04gqZpMZ0PDdBP6MaBZN8UuymhieUjeiAdyxVNOLGz2Y3T8ipVfokjLUthWSm/p7IaGTMOApsZ0RxaBa9qfif10kxvPIzoZIUuWLzRWEqCcZkGgDpC80ZyrEllGlhbyVsSDVlaGMq2hC8xZeXSbNa8c4r1buLcu06j6MAx3ACZ+DBJdTgFurQAAYJPMMrvDmp8+K8Ox/z1hUnnzmCP3A+fwCpiJIX</latexit>

Target Confidence
Predictor

Reweight Demonstrations
Imitation Learning

Target

Demonstrations

Source

csrc
<latexit sha1_base64="afcQzZ1L1SOhI/SNLGC0Rt5LVko=">AAAB83icbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YA2ls120y7dbMLuRCyhf8OLB0W8+me8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKzucZxwP6IDJULBKFqpyx66yJ8wM5pNeqWyW3FnIMvEy0kZctR7pa9uP2ZpxBUySY3peG6CfkY1Cib5pNhNDU8oG9EB71iqaMSNn81unpBTq/RJGGtbCslM/T2R0ciYcRTYzoji0Cx6U/E/r5NieOVnQiUpcsXmi8JUEozJNADSF5ozlGNLKNPC3krYkGrK0MZUtCF4iy8vk2a14p1XqncX5dp1HkcBjuEEzsCDS6jBLdShAQwSeIZXeHNS58V5dz7mrStOPnMEf+B8/gCrHJIY</latexit>

Demonstrations w/

ctar
<latexit sha1_base64="kkE4WodyDL5Dwd2KFznLjokROjs=">AAAB83icbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YA2ls120y7dbMLuRCyhf8OLB0W8+me8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKzucZxwP6IDJULBKFqpyx66yJ8wQ6onvVLZrbgzkGXi5aQMOeq90le3H7M04gqZpMZ0PDdBP6MaBZN8UuymhieUjeiAdyxVNOLGz2Y3T8ipVfokjLUthWSm/p7IaGTMOApsZ0RxaBa9qfif10kxvPIzoZIUuWLzRWEqCcZkGgDpC80ZyrEllGlhbyVsSDVlaGMq2hC8xZeXSbNa8c4r1buLcu06j6MAx3ACZ+DBJdTgFurQAAYJPMMrvDmp8+K8Ox/z1hUnnzmCP3A+fwCpiJIX</latexit>

Target Confidence
Predictor

Reweight Demonstrations
Imitation Learning

Target Demos:  Ξ$%"

w/ confidence: c!"#

𝑐!"#

Target Confidence 
Predictor

Reweight Demonstrations 
for Imitation Learning

Figure 3.6: Overview of the adversarial confidence transfer.

different robot arms with different degrees of freedom. Our key idea is to leverage the
correspondence between state-action pairs in the source and target environments to
learn a confidence measure without the restrictive assumption of access to confidence
annotations of target demonstrations.

This problem setting introduces a new challenge: The source and target environ-
ments have different state-action spaces. That means the dimensions of the states and
actions and even the semantic meaning of each dimension can be different between
the two environments, so we cannot directly apply the source confidence predictor
to the target state-action pairs. We instead need to transfer the source confidence
predictor to the target environment.

Specifically, the source agent is modeled as a Markov decision process (MDP),
M src = ⟨Ssrc,Asrc, psrc,Rsrc, ρsrc

0 , γsrc⟩. The source MDP M src and the target MDP M

may differ in any component of the MDP. Our goal is to find the optimal policy for
the target agent with the help of the source agent.

Specifically, in this problem setting, apart from a set of imperfect demonstrations
Ξ for the target agent, we are also given a set of imperfect demonstrations Ξsrc =

{ξsrc
1 , ξsrc

2 , . . . } for the source agent along with a measure of confidence csrc in the
source environment. Here the confidence function wsrc : Ssrc × Asrc → R evaluates
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how useful the input state-action pairs are similar to the confidence in [47] and if
they are available or easy to access. Our goal is to find a well-performing policy π

for the target environment. Note that we go beyond standard imitation learning by
allowing these demonstrations in both environments to range from useless or even
harmful demonstrations to nearly optimal or fully optimal ones. At the high level, our
approach is to learn a confidence function w : S ×A → R, which assigns a value to
how confident we are in the optimality of the action at in a particular state st. We can
then reweight the target state-action pairs and conduct standard imitation learning
on the reweighted state-action pairs to learn a policy. We would like to model w as a
neural network and learn w by leveraging the knowledge of the confidence function
wsrc from the source environment.
Assumptions. To transfer the confidence predictor from the source to the target
environment, we assume that the source and target environments are correspondent,
which means that there exists a relational mapping between the state-action pairs
of the source agent and the target agent [52]. Specifically, there exists a relation
on states: Φ : Ssrc × S. There also exists a mapping from source state-action pairs
to the target action space, H1 : Ssrc ×Asrc → A, and another mapping from target
state-action pairs to the source action space, H2 : S × A → Asrc. The mappings Φ,
H1, and H2 satisfy the following: if (ssrc, s) ∈ Φ, then ∀asrc ∈ Asrc, (ssrc

next, sH1) ∈ Φ

and ∀a ∈ A, (snext, s
src
H2
) ∈ Φ. Here, ssrc

next is the successor state from ssrc when
taking the action asrc, and sH1 is the successor state from state s when taking the
action H1(s

src, asrc), and snext and ssrc
H2

are defined similarly. The assumption builds
a connection between the source and target agents. Without this assumption, the
two environments may have no relation to each other, and there will not be any
reason for knowledge transfer across them. This assumption is often satisfied in many
real-world applications. Specifically, we are interested in two common settings: (1)
The source environment is a simulation of a real robot that would define the target
environment. For example, the source environment can be a simulated robotic arm
picking an apple from a bowl in simulation, while the target environment can be a real
robotic arm picking an apple from a bowl. (2) The source and target environments are
different robots performing the same task in a similar context. For example, the source
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Figure 3.7: (left) The overview of the learning process consisting of three stages: In the first
stage, we train the source encoder Esrc and the shared decoder with source confidence-labeled
demonstrations ssrc, asrc. In the second stage, we align the latent distributions of source and
target state-action pairs with a multi-length partial trajectory matching, where we explain
the second stage in detail in the right figure. In the third stage, we use the learned E chained
with F as the target confidence predictor. (right) Multi-length partial trajectory matching:
we align the feature-level distributions (output of encoders Esrc and E) of different lengths’
partial trajectories with different discriminators D1, D2, . . . , Dn and align the confidence-level
distributions (output of the shared decoder F ) of different lengths’ partial trajectories with
different discriminators D′

1, D
′
2, . . . , D

′
n.

environment can be a simpler 3-DoF robot arm reaching the center of a bowl without
colliding with obstacles, while the target robot can be a 7-DoF robot performing the
same task. We note that the correspondence assumption is less restrictive compared
to assumptions in related prior work such as assuming the same dynamics across the
environments [48, 8].

3.4.1 Adversarial Confidence Transfer

We aim to leverage the confidence annotation in the source environment and transfer
the confidence knowledge to the target environment. Our key insight is to map the
source and target state-action pairs to a common latent space Z, and enforce similarity
between the latent features (zsrc and z) for corresponding state-action pairs. Here,
(ssrc, asrc) and (s, a) satisfy (ssrc, s) ∈ Φ and (ssrc

next, snext) ∈ Φ. We then build a shared
decoder to predict the confidence from the latent features.

Since the source and target environments have different state-action spaces, we
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learn two different encoders Esrc : Ssrc ×Asrc → Z and E : S × A → Z to map the
source and target state-action pairs into a common latent space Z. We then learn
a shared decoder F : Z → R to predict the confidence from latent features with
confidence-labeled demonstrations in the source environment. The target confidence
predictor can be computed by F ◦E. Now, the challenge is how to learn the encoders
to ensure that the common latent space satisfies the above requirements.

Multi-length Partial Trajectory Matching

To map correspondent state-action pairs to a similar latent feature, we develop a
distribution matching objective to align the latent distribution of source and target
state-action pairs. We can directly align the distribution of state-action latent features,
i.e., matching Esrc(ssrc

t , asrc
t ) and E(st, at). However, this does not capture the temporal

dependency between state-action pairs over a trajectory. To address this issue, we
incorporate a prior that captures this temporal dependency when learning the encoders.
Imagine a setting where a simulated robot and a real robot are both making a burger.
The state-action pairs corresponding to placing the ingredients (e.g., the patty, lettuce,
and tomatoes) are always after placing the bottom bun. If we only match the state-
action pairs one at a time between the simulated and the real robot, placing the
bottom bun may match placing any of the ingredients or even the top bun, but if we
also match the consecutive steps of the state-action pairs, placing the bottom bun
in both environments will more likely capture the information that the bottom bun
comes before the rest of the ingredients. So, as shown in Fig. 3.7 (right), we propose
a multi-length partial trajectory alignment that emphasizes learning the temporal
relationship between state-action pairs. Specifically, we match the latent feature
distribution of length k, (k = 1, 2, . . . , K) partial trajectories, which preserves the
temporal relationship between consecutive states and actions and makes the latent
features of correspondent state-action pairs more likely to be aligned.
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Feature-Level and Confidence-Level Matching

We can now develop our learning algorithm that aligns the latent distribution of
state-action pairs. We first train the source encoder Esrc and the shared decoder F

with source confidence-labeled state-action pairs using a regression loss:

Lreg = E(ssrc,asrc)∼ξsrc,ξsrc∼Ξsrc [∥F (Esrc(ssrc, asrc))− csrc(ssrc, asrc)∥] . (3.18)

After learning Esrc and F , we fix the parameters of Esrc, and F and use the latent
feature space of Esrc as the common feature space. We then only need to make the
target encoder E encode the target state-action pairs into this shared feature space
and match the source latent feature distribution.

We learn the latent feature distribution alignment using a generative adversarial
network. Since we only want the partial trajectories of the same length to be matched,
for each length of partial trajectories k, we adopt a discriminator Dk and a loss Lk

fea

to match the latent distribution of length-k partial trajectories. Specifically, the
discriminator Dk aims to discriminate the latent features of source and target length-k
partial trajectories, while the target encoder E is trained to confuse the discriminator.
The loss for the discriminator Dk can be derived as a binary classification loss:

Lkfea =− E
(s1,a1,...,sk,ak)∼ξ,(ξ,)̇∼Ξsrc [log (Dk(Cat (Esrc(s1, a1), . . . , E

src(sk, ak)))]

− E(s1,a1,··· ,sk,ak)∼ξ,ξ∼Ξ [log (1−Dk(Cat (E(s1, a1), . . . , E(sk, ak)))] .
(3.19)

We concatenate the encoded features of multiple consecutive state-action pairs as the
latent feature for the length-k partial trajectories. The discriminator Dk is trained to
minimize the discriminator loss Lk

fea and the target encoder E is trained to maximize
the discriminator loss.

However, the above losses only match the latent feature distributions of state-
action pairs, which is confidence-agnostic. So there may still exist mismatches of
state-action pairs with different confidence values. As shown in Fig. 3.7 (right), to
address the issue, we introduce a confidence-level distribution matching to match the
predicted confidence of source and target state-action pairs, which further guides the



CHAPTER 3. SUBOPTIMAL DEMONSTRATIONS 37

latent features to be matched in a confidence-aware way. Specifically, we use another
discriminator D′

k for matching the length-k confidence sequence of length-k partial
trajectories using a similar binary classification loss:

Lkcon =− E
(s1,a1,··· ,sk,ak)∼ξ,(ξ,)̇∼Ξsrc

[
log
(
D′

k(Cat (F (Esrc(s1, a1)), . . . , F (Esrc(sk, ak)))
)]

− E(s1,a1,...,sk,ak)∼ξ,ξ∼Ξ

[
log
(
1−D′

k(Cat (F (E(s1, a1)), . . . , F (E(sk, ak)))
)]

.

Similarly, D′
k is trained to minimize the discriminator loss Lk

con, and E is trained to
maximize the discriminator loss. To optimize the whole network, we first train the
source encoder and the shared decoder with the source confidence-labeled data as
shown in Eqn. (3.20) (the first stage in Fig. 3.7 (left)).

min
Esrc,F

Lreg (3.20)

We then iteratively train the feature-level and confidence-level discriminators and the
target encoder as shown in Eqn. (3.21) and Eqn. (3.22)

min
Dk,D

′
k

Lk
fea + Lk

con(k ∈ [1, K]) (3.21)

max
E

K∑
k=1

(
Lk

fea + λLk
con

)
, (3.22)

where λ is the trade-off between Lfea and Lcon (the second stage in Fig. 3.7 (left)).
After convergence, we chain the target encoder E and the confidence decoder F to
form the target confidence predictor as shown under Conf. Score Inference in
Fig. 3.7.

We can then predict the confidence of each state-action pair (s, a) in the target
environment as F (E(s, a)). With the confidence of each state-action pair, when
conducting imitation learning on the target demonstrations, we use the confidence to
re-weight each state-action pair in the imitation loss as in [48]. Then the imitation
learning policy can learn more from useful demonstrations with higher confidence.
Relation to Existing Works. Our method relaxes assumptions in prior works [48, 10]
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and targets a more realistic problem. However, we argue that our method is compatible
with prior works. The common latent feature space in our method can be regarded as
a new space of state-action pairs for the source and target environments, where the
correspondence between state-action pairs is preserved, especially w.r.t. confidence.
With the common latent feature space, we can easily extend prior works to the setting
of different state spaces by conducting the algorithm, that is originally performed on
states, on the latent feature. Our contribution is not only providing a new approach
to learning from imperfect demonstrations but also expanding the usage of algorithms
from prior work by introducing a new space to operate in.

3.4.2 Experiments

We conduct experiments on two MuJoCo environments, a simulated and a real Franka
Panda arm, and have released the code here. We compare our method (Ours)
with baselines GAIL [20], Dynamics Cycle-Consistency (DCC) [52], and variants of
our method by gradually adding modules: starting from GAIL without confidence
weighting, we first add feature-level matching as Ours-Feature. We then add
the confidence-level matching as Ours-Confidence. Adding multi-length partial
trajectory matching to Ours-Confidence derives Ours. We show the results of using
the ground-truth confidence to reweight the target demonstrations (Oracle).

Our approach uses the source and target demonstrations and the source confidence
function as the input. To implement the baseline methods we make the following
choices: For GAIL [20], we directly conduct imitation learning from the demonstrations
in the target environment without any confidence weights. For DCC [52], the original
paper uses trajectories sampled from a random policy to learn the translation mappings.
In our setting, we use both the demonstrations and the random trajectories to learn
the translation mapping.

To generate the ground-truth confidence score for the source demonstrations,
following the common practice in prior works [48, 10], we normalize the expected
return of all the demonstrations to [0, 1] by min-max normalization and assign all the
state-action pairs in each trajectory with the confidence of the trajectory.

https://www.dropbox.com/s/8pi4yrfb8bricxn/code.zip?dl=0
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Mujoco Simulation

Demonstration Generation. For the Reacher environment, we compute the median
value between the expected returns of a random policy and the optimal policy and find
a partially-trained policy to match the value. Then we have three policies: random
policy, 50% partially-trained policy, and optimal policy. We generate 94, 5, and 1

trajectories from the random policy, the 50% partially-trained policy, and the optimal
policy respectively, which are 100 trajectories in total.

For the Ant environment, we select five values with an equal interval between the
expected returns of a random policy and the optimal policy and find three partially-
trained policies to match the three values. Then, we have five policies: random policy,
25% partially-trained policy, 50% partially-trained policy, 75% partially-trained policy,
and optimal policy. We generate 48, 49, 97, 5, and 1 trajectories from the random
policy, the 25% partially-trained policy, the 50% partially-trained policy, and the 75%
partially-trained policy, and the optimal policy respectively.

Simulated Robot Arm

Reward Design. We use xcenter to denote the center of the circle on the table surface,
and xt to denote the position of the end-effector at time step t. Based on this goal, we
develop a reward function consisting of three parts: the first part is the negative L2
distance between the xt and xcenter; the second part penalizes collisions with −1000
reward when the end-effector collides with the wall or does not reach the table within
the time limit Th; and the third part is a gain of positive reward when the end-effector
reaches the table surface within the circle area and the closer to the center, the higher
the reward. The reward for the simulated robot arm environment is defined as Rt =

−∥xt−xcenter∥2−1000× (I [collide] |I [t ≥ Th])+400× exp(−∥xreach−xcenter∥2
0.1

)× I [reach].
The initial position of the joint that controls the rotation of the hand can vary freely
in [0, 2π], and the initial position of all the other joints of the arm can vary ±0.3. We
create an initial position area within these regions to allow some variance for the task
while not exceeding the joint limits of the robot.
Demonstration Generation. We create out-of-time trajectories by injecting noisy
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actions with some probability and we vary the probability to create different kinds of
out-of-time trajectories. We vary the suboptimal trajectories by changing the distance
from the goal point on the table to the circle center.
Composition of Demonstrations. In both the source and target environments, we
use the same composition of trajectories. In the OR setting, we collect 10 optimal
trajectories and 200 out-of-time trajectories. In the OSC setting, we collect 40 optimal
trajectories, 80 suboptimal trajectories, and 150 collision failure trajectories. The
composition is designed to contain more suboptimal demonstrations and failure cases
to make the imitation learning problem more challenging.

Sim-to-Real Environment

In the Sim-to-Real environment, the network and the imitation learning algorithm are
the same as in the simulated robot arm environment.
Composition of Demonstrations. For the simulated robot arm, we collect human
demonstrations by controlling the end-effector by the mouse. For the real robot arm,
we collect human demonstrations by moving the robot arm by hand. For both the
simulated and real robot arms, the demonstrations are composed of 5 trajectories for
placing the cube on the left, middle, and right each, 5 trajectories colliding with the
left, up, and bottom boundary of the upper shelf each, and 5 trajectories colliding
with the books on the right side (we cannot reach the right boundary due to the joint
limit).

To implement our approach in the simulated robot arm and the real robot arm,
we use a three-layer fully-connected network for Esrc and E respectively, a one-layer
fully-connected network for F and a three-layer fully-connected network for Dk and
D′

k (k = 1, · · · , K) respectively. We use behavior cloning [2] as the imitation learning
algorithm to learn the final policy from the reweighted demonstrations.

For the Mujoco environments, we evaluate the average return of 100 rollouts. For
both the simulated robot and sim-to-real environments, we evaluate the average return
of 500 rollouts. In all the experiments, we compute the results over 10 runs and report
the mean and the standard deviation. We compute the p-values using the student’s
t-test.
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(a) 1-joint (b) 2-joint (c) 4-leg (d) 5-leg

Figure 3.8: Illustration of source and target MuJoCo environments. The left two
figures are Reacher and the right two are Ant.

Results

MuJoCo Environment. We create 4 different MuJoCo environments (see Fig. 3.8):
1-joint and 2-joint reacher, 4-leg and 5-leg ant. 1-joint reacher and 4-leg ant are the
source environments, and the 2-joint reacher and 5-leg ant are the target environments.
The task for the reacher is to reach the red point from its initial configuration. The
task for the ant is to move towards the right horizontally as fast as possible. We train
the optimal policy using the RL algorithm TRPO [39]. For the Reacher environment,
we select the random policy, a partially-trained policy, and the optimal policy to
collect demonstrations with mixed confidence. For the Ant environment, we select
the random policy, three partially-trained policies, and the optimal policy to collect
demonstrations with mixed confidence.

The expected return for these experiments is shown in Table 3.4. Ours outperforms
GAIL and DCC, and is comparable with the Oracle in both environments. Also,
Ours outperforms Ours-Confidence, which demonstrates the efficacy of multi-step
partial trajectory matching. Ours-Confidence outperforms Ours-Feature and
Ours-Feature outperforms GAIL, which demonstrate the efficacy of confidence-level
and feature-level matching respectively. For 2-joint reacher and 5-leg ant, the highest
p-values comparing with baselines (between Ours and DCC) are 0.147 and 0.031

(statistically significant) respectively.
Figure 3.9(a) and 3.9(c) show the learning curves of the algorithms. We observe

that all methods have similar convergence rates. Figure 3.9(b) and 3.9(d) show a



CHAPTER 3. SUBOPTIMAL DEMONSTRATIONS 42

Reacher Ant

GAIL -47.13±5.67 507.85±338.80
DCC -41.11±5.35 1218.59±231.74

Ours-Feature -43.97±4.68 1059.02±280.95
Ours-Confidence -41.82±6.80 1263.04±343.02

Ours -39.53±4.32 1556.43±159.12

Oracle -28.73±3.97 1622.55±179.43

Table 3.4: The expected return for MuJoCo environments.

rollout generated by each of the policies. The rollout from the oracle policy reaches
the goal in the most effective manner following the shortest trajectory length. Ours

is the next closest to the Oracle, while the GAIL baseline fails at reaching the goal
position at times.
Simulated Robot. As shown in Fig. 3.10, we create a task to move the end-effector
of a 5 DoF Panda Franka Robot arm toward the center of a plate without colliding
with the boundaries. The reward function consists of the negative L2 distance to the
center; collisions with the wall or failing to reach the table within the time limit; and
positive reward when the end-effector reaches the plate.

The source robot arm has 7 DoF and the target has 5 DoF, where the joints marked
by red in Fig. 3.10 are disabled. We show different kinds of trajectories: (green–optimal
trajectory reaching the center of the plate), (blue–suboptimal trajectories reaching the
plate but not the center), (red–failure cases colliding with the wall), (violet–another
type of failure case failing to reach the plate within the time limit). We create two
settings: (1) (OT) consists of the optimal (green) and out-of-time (violet) trajectories;
and (2) (OSC) consists of optimal (green), suboptimal (blue), and collision (red)
trajectories. In the OT setting, we use the joint and end-effector position as the
state, which serves as an easy setup since the end-effector position is shared between
the 7-DoF and the 5-DoF. In the OSC setting, we use the joint position, velocity,
and torque as the state, which is difficult to align. For both settings, we use the 3D
end-effector position difference as the action space.

The expected return and the success rate are shown in Table 3.5. Ours outperforms
GAIL and DCC with a large margin, which indicates that the learned target
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Figure 3.9: The top row and the bottom row are the expected return and sample trajectories
for 2-joint reacher and 5-legged ant respectively. The light grey line in the Ant environment
is the positive x-axis, which is the direction the ant is supposed to move toward.

confidence predictor can assign higher confidence to useful demonstrations than DCC,
and GAIL. The order of the performance from high to low is Ours, Ours-Confidence,
Ours-Feature, and GAIL, which demonstrates the efficacy of our multi-length partial
trajectory matching, confidence-level matching, and feature-level matching respectively.
The highest p-values when comparing with baselines (between Ours and DCC) are
5.64× 10−12 for the success rate and 1.25× 10−13 for the expected return in the OR
setting, and 0.006 for the success rate and 0.031 for the expected return in the OSC
setting, demonstrating statistical significance.
Sim-to-Real Environment. In the sim-to-real environment, we use a simulated and
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Figure 3.10: Illustration of different trajectories and the 5 DoF robot arm.

a real Franka Panda Arm as the source and the target respectively (both with 7-DoF).
The task is to move the cube to the upper layer of the shelf (see Fig. 3.11). On the
shelf, there is a large stack of books on the right and a small stack on the left. The
middle area is empty. We assign positive rewards to the success of placing the cube on
the shelf, with rewards 200, 300, and 100 for placing it on the left, the middle, and the
right respectively. We penalize time by giving a −1 reward for each time step. The
average number of steps for all demonstrations is about 300. If the arm fails to put
the cube within 1000 steps, it receives a reward 0. We use the joint position, velocity,
and end effector position as the state space and joint forces as the action space.

Fig. 3.11(c) and 3.11(d) show Ours outperforms baselines DCC and GAIL. The
performance from high to low is: Ours, Ours-Confidence, Ours-Feature, and
GAIL, which demonstrates that multi-length partial trajectory matching, feature-
level, and confidence-level matching are all necessary to learn a common latent space
and an accurate target confidence predictor for the real robot. The p-value between
Ours and the highest baseline, DCC, is 0.0004 for the expected return and 0.0052

for the success rate, demonstrating statistical significance.
Varying Composition of Demonstrations. We conduct experiments by varying
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Table 3.5: The expected return and the success rate among 500 trials (%) of GAIL,
DCC, Ours-Single, Ours w/o Lcon, Ours, and Oracle for the two setups OR and OSC
in the simulated robot experiments.

Method OT OSC

Return Success Return Success

GAIL -902.2±152.2 42.8±11.9 -1065.8±105.8 21.2±8.6
DCC -495.6±46.5 76.4±3.4 -723.7±121.4 49.5±15.2

Ours-Feature -1198.4±80.4 31.2±7.5 -868.1±265.7 37.6±18.3
Ours-Confidence -781.9±12.7 59.6±0.8 -821.2±121.4 42.0±11.9

Ours -154.8±12.8 92.8±1.0 -702.2±104.4 52.4±7.9

Oracle -55.6±2.3 100.0±0.0 -613.9±159.4 59.6±13.2

Table 3.6: Expected return with respect to varying compositions of the source demonstrations
for Reacher and Ant. The numbers in the demonstration column indicate the number of
the demonstrations collected from random to optimal policies (3 policies for Reacher and 5
policies for Ant).

Reacher Ant
Demonstration Expected Return Demonstration Expected Return

1-5-94 -36.69±5.65 48-49-97-5-1 1525.03±176.91
1-49-50 -37.38±10.11 48-73-73-5-1 1489.85±268.22
1-94-5 -37.96±6.61 48-97-49-5-1 1436.78±176.91
47-48-5 -37.61±5.50 72-73-49-5-1 1351.44±115.59
94-1-5 -39.49±2.56 97-48-49-5-1 1345.96±299.08

the composition of source demonstrations but fixing the target demonstrations in the
two Mujoco environments to test the robustness of the confidence predictor under
different demonstration mixtures. We do not change the target demonstrations since
that will also influence the imitation learning performance and we cannot test the
efficacy of the confidence predictor. In the Demonstration column in Table 3.6, we
show the number of demonstrations that are collected from different policies from
random to optimal in Reacher (3 policies) and Ant (5 policies). From top to bottom,
the optimality of source and target demonstrations deviates more and more. We
observe that the performance drops with a larger deviation but does not drop too
much even on the last row. This demonstrates that the proposed approach can work
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Figure 3.11: (a-b) Illustration of the simulated robot and the real robot arm environments.
Different colors indicate different areas to place the objects. (c-d) Expected return and
success rate.

stably even with a confidence distribution shift between demonstrations.

3.5 Chapter Summary

In this chapter, we introduce the challenges of learning from suboptimal demonstrations
and propose several algorithms to tackle suboptimal demonstrations. The key to
addressing this problem is developing a confidence measurement to down-weight
suboptimal demonstrations and learn more from closer to optimal demonstrations. To
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learn the confidence measurement, we first resort to the expected return and design a
confidence measurement based on the rectified expected return.

We then propose a general learning framework, Confidence-Aware Imitation Learn-
ing, for imitation learning from demonstrations with varying optimality. We adopt
standard imitation learning algorithms with their corresponding imitation loss (inner
loss) and leverage an outer loss to evaluate the quality of the imitation learning
model. In this way, we can simultaneously learn a confidence score over the demon-
strations using the outer loss and learn the policy by optimizing the inner loss over the
confidence-reweighted distribution of demonstrations. This framework is applicable to
any imitation learning model with compatible choices of inner and outer losses. We
also provide theoretical guarantees on the convergence of CAIL and show that the
learned policy outperforms baselines on various simulated and real-world environments
under demonstrations with varying optimality.

Besides leveraging the annotations in the target agent, we further propose an
algorithm to learn the confidence predictor for the target agent by leveraging confidence
labels and demonstrations in a different but correspondent environment.

Our experimental results show that all of our methods can learn an optimal or
near-optimal policy from suboptimal demonstrations.



Chapter 4

Correspondence Learning from

Cross-Domain Demonstrations

4.1 Cross-Domain Demonstrations

Humans are born with the ability to develop new skills by mimicking the behavior
of others who may have different embodiments [31]. For example, prior cognitive
science work suggests that 1- or 2-year-old children can infer the intentions of adults
and re-enact their behavior with their own body even with a large difference in body
structures [32, 30]. We refer to the ability to infer the mapping between the state,
and action pairs of agents with different dynamics or embodiment as correspondence
learning. Cross-domain demonstrations refer to demonstrations that are collected on
other robots but have correspondence to the target agent. Thus, in applications with
limited demonstrations, we could learn the correspondence between agents to enable
the target agent to learn from these cross-domain demonstrations, which resolves the
issue of insufficient demonstrations.

To learn the correspondence between agents, several prior works leverage paired
trajectories to learn invariant representations across agents [17, 41, 24, 52], where
the representation only preserves the information that is relevant to the downstream
tasks. However, collecting and annotating paired trajectories require experts with
substantial domain knowledge and is usually expensive to access at a large scale.

48
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Due to the difficulties of collecting paired data, several works propose learning
the correspondence between environments as a translation map between the agents
using unpaired trajectories [53, 3]. The key insight of these works is adopting a
regularization term over the translation model, where cycle-consistency is the most
commonly used regularization [44, 22, 23, 51]. However, with no supervision, the
quality of the learned correspondence model is usually not as good as models learned
with strong supervision over paired data [50, 42].

In section, we propose Weakly Supervised Correspondence Learning (WeaSCL) to
find a trade-off between strong supervision of strictly paired data and regularization
over unpaired data. Our key insight is to leverage weak supervision that is useful
for learning correspondence and also is easy to access in real-world applications. We
propose two types of weak supervision: i) temporal ordering in states and actions,
and ii) paired abstractions over data.

The temporal ordering, which originates from the nature of sequential decisions,
indicates the temporal dependency of the consecutive states and actions. Such ordering
has been used in other domains to detect the discontinuities [4]. Leveraging temporal
dependency as a measure of weak supervision enables us to avoid compounding errors
of translation maps that can be accumulated over long horizons.

We define paired abstractions by a similarity metric over some abstraction of
states or state-action pairs of the agents. For example, the location of a mobile
robot, the pose of an end-effector, or the confidence of a behavior can potentially be
suitable abstractions over data. When learning correspondence between two agents,
one can consider a pair of these abstractions as opposed to paired data. The paired
abstractions are easier to obtain and annotate than strictly paired data, as annotators
would have an easier time comparing similarity over simpler abstractions. For example,
in Fig. 4.1, it would be difficult to align the full states including the joint angles of
the trajectories of a four- and five-legged Ant. On the other hand, it is much easier
and more informative to decide if an abstraction of the state, e.g., the location of the
Ant agents on the 2D plane is aligned. We collect such paired abstractions and learn
a similarity function over this data. We then incorporate this similarity function in
the loss function imposing a constraint on the translation maps.
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Figure 4.1: An example of the paired abstractions. Given two trajectories of four- and
five-legged ant robots, it is difficult to decide whether two full states that include joint angles
of each agent are aligned, while it is easy to align simpler abstractions over these states such
as whether the ants have the same spatial location.

4.2 Correspondence Learning

We focus on learning correspondence between two agents. However, we note that one
can extend this to multiple agents by building correspondence between pairs of agents.
Since correspondence learning is not limited to the imitation learning problem, we
use a new set of notations and definitions in this chapter. We model each agent as
a deterministic Markov Decision Process (MDP): M1 = (S1,A1, T 1,R1, p10, γ) and
M2 = (S2,A2, T 2,R2, p20, γ). Similar to [51], we define a correspondence fromM1 to
M2 as follows: Let Φ : S1 → S2 be a state map, and H1 : S1 ×A1 → A2 and H2 :

S2 ×A2 → A1 be two action maps, where the state map and the action maps satisfy
the following requirements: ∀s1 ∈ S1, if s2 = Φ(s1), then ∀a1 ∈ A1,Φ(T 1(s1, a1)) =

T 2(s2, H1(s1, a1)) and ∀a2 ∈ A2,Φ(T 1(s1, H2(s2, a2))) = T 2(s2, a2). Intuitively, the
requirements mean that the successor states of the two aligned states should be aligned
if taking aligned actions.

Using this correspondence definition, we are now ready to introduce our problem
statement. We assume access to three pieces of information: a set of trajectories
(sequence of state, action pairs) Ξ1 = {ξ1} forM1, a set of trajectories Ξ2 = {ξ2} for
M2, and one or multiple sets of paired abstractions over the states or the state-action
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pairs. Specifically, we have Ks sets of paired abstractions over states: Y s
1 , Y

s
2 , . . . , Y

s
Ks

and Ka sets of paired abstractions over state-action pairs. Each Y s
k is a set of pairs

of states and similarity labels over abstractions of states: Y s
k = {(s1, s2, vs)}, where

vs ∈ [0, 1] reflects the similarity of one choice of abstraction, e.g., the pose of an
end-effector, over the state s1 and s2. Note that the data tuples (s1, s2, vs) are given
by annotators, where the annotators decide which abstraction to take and how to
annotate similarity. Our algorithm does not have access to the choice of abstraction
and similarity but aims to learn a similarity function Φweak

k : S1×S2 → [0, 1] mapping
the raw pairs of states to a similarity value based on the given data tuples. Similarly,
each Y a

k = {((s1, a1), (s2, a2), va)} and va ∈ [0, 1] reflects the similarity of a choice
of abstraction over (s1, a1) and (s2, a2), and we aim to learn a similarity function
Hweak

k : S1 ×A1 ×S2 ×A2 → [0, 1] mapping the raw pairs of state-action pairs to the
similarity value. Our goal in correspondence learning is to learn the state map Φ and
the action map H1 and H2 with Ξ1, Ξ2, and the similarity functions learned from the
paired abstraction data Y s

1 , . . . , Y
s
Ks and Y a

1 , . . . , Y
a
Ka .

We would like to emphasize that the paired abstractions only consider a loose
alignment between the states and actions of the two MDPs. For example, going back
to Fig. 4.1, using paired abstractions, we only consider the pairing of locations of the
two Ant agents as opposed to the strict alignment of the full states including the joint
angles or velocities. Such loose pairing of the states—pairing of abstractions over
states—simply can be assessed by visual observations, and collecting such data along
with annotations is much easier, and can serve as cheap supervision.

4.3 Background on Dynamics Cycle-Consistency

To address our correspondence learning problem, we would like to first introduce some
background on dynamic cycle-consistency (DCC) [51]. DCC first uses adversarial
learning to ensure that the states mapped by Φ fall into the domain ofM2. Specifically,
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one can learn Φ with a discriminator Ds by the following adversarial objective:

min
Φ

max
Ds
Lsadv(Φ, D

s) =

Es2∼Ξ2 [Ds(s2)] + Es1∼Ξ1 [1−Ds(Φ(s1))].
(4.1)

In addition, DCC ensures that the actions mapped by H1 and H2 also match the
actions in the domain ofM2 andM1 using discriminators Da1 and Da2 respectively:

min
H1,H2

max
Da1 ,Da2

Laadv(H
1, H2, Da1 , Da2) =

Ea2∼Ξ2 [Da2(a2)] + E(s1,a1)∼Ξ1 [1−Da2(H1(s1, a
1))]

+ Ea1∼Ξ1 [Da1(a1)] + E(s2,a2)∼Ξ2 [1−Da1(H2(s2, a
2))].

(4.2)

Finally, one can add a domain cycle-consistency objective on the state-action maps
H1 and H2:

min
H1,H2

Ldom_con(H
1, H2) =

E(s1,a1)∈Ξ1

[
∥H2

(
Φ(s1), H1(s1, a1)

)
− a1∥

]
+ E(s2,a2)∈Ξ2

[
∥H1

(
Φ(s2), H2(s2, a2)

)
− a2∥

]
.

(4.3)

This equation ensures that the two action maps are consistent with each other and
the translated action should be able to be translated back.

The adversarial training as proposed so far suffers from the mode collapse prob-
lem [16], where multiple states for one agent can potentially be mapped to one state
in the other. In addition, the domain cycle-consistency cannot solve the problem when
the two maps H1 and H2 make consistent mistakes. For example, we can map (s1, a1)

to an incorrect action, e.g., ā2, by H1 and map it back to a1 by H2. Here, both maps
make mistakes but the domain consistency is still preserved. To address this issue,
DCC introduces the dynamics cycle-consistency objective:

min
Φ,H1

Ldyn_con(Φ, H
1) =

E(s1t ,a
1
t ,s

1
t+1)∼Ξ1

[∥∥Φ(s1t+1)− T 2
(
Φ(s1t ), H

1(s1t , a
1
t )
)∥∥] . (4.4)
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Here, the transition function T 2 for M2 is not always known and can be non-
differentiable. So one can empirically learn a transition function T̂ 2 using the following
objective:

min
T̂ 2
Lforward(T̂ 2) = E(s2t ,a

2
t ,s

2
t+1)∼Ξ2

[∥∥∥s2t+1 − T̂ 2(s2t , a
2
t )
∥∥∥] . (4.5)

Combining all the losses introduced so far, the final optimization objective is:

LDCC =λ0Ldyn_con(Φ, H
1) + λ1Ldom_con(H

1, H2)

+ λ2La
adv(H

1, H2, Da1 , Da2) + λ3Ls
adv(Φ, D

s),
(4.6)

where λ0, λ1, λ2 and λ3 are hyperparameters trading off between the different losses.
DCC firstly trains the forward dynamics T̂ 2 and then trains the translation model
with LDCC.
Limitations of DCC. Here, we discuss two core shortcomings of DCC—compounding
error and misalignment—which can lead to errors in the translation model.

The compounding error problem refers to the fact that the single-step errors from
the state and action maps can accumulate over a sequence. We empirically demonstrate
the existence of compounding errors by selecting a segment of a trajectory with horizon
T : ξ1 = {s10, a10, . . . , s1T} in Ξ1. We use two methods to derive the translated state at
time step T : (1) s2T = Φ(s1T ); (2) ŝ2T = T 2 (· · · T 2 (Φ(s10), H1(s

1
0, a

1
0)) , . . . , H1(s

1
T , a

1
T )).

The second method continuously uses the translated action to generate the next state
to follow the transition process in ξ1. Comparing the states reached by the first
and second approaches, we can empirically check whether there exists compounding
errors if we consecutively use the translated actions. We experiment in the Mujoco
HalfCheetah environment to build a correspondence between the two-legged and
three-legged robots. As shown in Fig. 4.2(a), the distance of s2T and ŝ2T for DCC gets
larger over time, which suggests the existence of compounding errors in the action
maps. We hypothesize that this is due to the fact that dynamics cycle-consistency
is only ensured for one time step and leads to a small error in that step but cannot
bound the error over a long horizon.

Dynamic cycle-consistency still suffers from misalignment issues. For example,
assume we are given two trajectories ξ1A and ξ1B for the agent followingM1 and two
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trajectories ξ2A and ξ2B for the agent followingM2, where the four trajectories have the
same number of time steps. Let’s assume the ground-truth translation should translate
ξ1A to ξ2A and ξ1B to ξ2B. However, if one only enforces dynamics cycle-consistency, it is
possible to learn a map that translates the states and actions at each step from ξ1A

to ξ2A and from ξ1B to ξ2B, or translates from ξ1A to ξ2B and from ξ1B to ξ2A, where both
maps have zero errors in terms of dynamics cycle-consistency. So the misalignment
issue can occur without strong supervision of paired data. However, strictly paired
data is often difficult to collect, and we thus aim for some intermediate supervision
such as learning similarities between paired abstractions over states, which are much
easier to annotate.

(a) Compounding Error (b) Different Horizon

Figure 4.2: (a) The translation error at each time step. (b) The compounding error with
respect to different final horizons.

4.4 Weakly-Supervised Correspondence Learning

Based on the above discussion, we propose weakly supervised correspondence learning
(WeaSCL), which addresses the above issues with two types of weak supervision: the
temporal ordering of information and paired abstraction data.
Multi-Step Dynamics Cycle-Consistency. As we discussed in Sec. 4.3, even a
small error for the state map and the action maps at each step will cause a large
deviation in a long horizon because DCC only enforces one-step consistency and the
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error can accumulate across time steps given no constraint. To address this problem,
we use the weak supervision of consecutive states and actions to enforce the dynamics
cycle-consistency over multiple steps. The new loss can be formulated as follows:

min
Φ,H1

Lm_dyn_con(Φ, H
1) = E(s1t ,a

1
t ,s

1
t+1,··· ,s1t+T )∼Ξ1

T∑
τ=1[∥∥∥Φ(s1t+τ )− T̂ 2

(
· · · T̂ 2

(
Φ(s1t ), â

2
t

)
· · · â2t+τ−1

)∥∥∥] , (4.7)

where â2t = H1(s
1
t , a

1
t ) is the translated action at time t and T is the final horizon to

enforce dynamics cycle-consistency. With this new loss, as shown in Fig. 4.2(a), with
a final horizon 10, the compounding error is substantially reduced.

Now the question is how long of the final horizon we should enforce the dynamics
cycle-consistency. If the final horizon is small, the compounding error problem could
still exist. If the final horizon is too large, computing the loss at each step can lead to
high computation costs. We conduct an experiment on the performance of translation
with respect to the final horizon in the HalfCheetah environment. We create two
agentsM1 with three legs andM2 with two legs. The two agents different in the body
structure and to achieve the same trajectory like moving forward for one unit, M1

needs to coordinate the 3 legs whileM2 needs to coordinate the 2 legs. So they may
take different actions to achieve the same trajectory.

We translate the states ofM1 toM2 with Φ and take the optimal action based
on the optimal policy ofM2. We then translate the action back toM1 with H2. In
Fig. 4.2(b), we observe that the performance of translation increases with a longer
horizon at first but saturates from horizon 5 onwards. The observation indicates that
we can treat the final horizon as a hyperparameter and tune it by gradually increasing
the horizon until when the performance saturates.
Learning Correspondence by Weak Supervision. To address the misalignment
issue, we adopt weak supervision from paired abstractions over states or state-action
pairs, where a similarity metric is defined on the abstractions, e.g., the location,
end-effector pose, or confidence over a state or state-action pair as opposed to the full
information. The key difference between strictly paired data and paired abstractions
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Figure 4.3: The architecture of the similarity function. The states or state-action
pairs from the two agents are first mapped by their individual encoders to a shared
hidden space. The hidden feature is concatenated and mapped to the similarity value
with a multi-layer perceptron.

is that strictly paired data need to comprehensively assess all the aspects of the two
states or state-action pairs, which is difficult to collect. On the other hand, paired
abstractions only consider similarities over the abstraction of the state, which is thus
easier to annotate.

We first learn a similarity function from each set of paired abstraction data, which
is modeled as a neural network with a pair of states or state-action pairs as input and
outputs a similarity value in [0, 1]. The architecture is shown in Fig. 4.3. We first
map the input states from both agents to the same hidden space by their individual
encoders and concatenate the two hidden features from the two input states. Then we
use a fully-connected network to map the concatenated feature to the scalar similarity
value. The losses for all the similarity functions are

min
Φweak

k

Lsk(Φweak
k ) = E(s1,s2,vs)∼Y s

k
ℓ(Φweak

k (s1, s2), vs)

min
Hweak

k

Lak(Hweak
k ) = E((s1,a1),(s2,a2),va)∼Y s

k
ℓ(Hweak

k (s1, a1, s2, a2), va),
(4.8)
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where ℓ takes the binary cross entropy loss to minimize the difference between the
predicted and the ground-truth similarity. Then, we impose the learned similarity
function as a constraint on the state map and the action maps:

min
Φ
Lweak
s (Φ) =

Ks∑
k=1

Es1∈Ξ1

[
−Φweak

k (s1,Φ(s1))
]

min
H1
Lweak
a (H1) =

Ka∑
k=1

E(s1,a1)∈Ξ1

[
−Hweak

k (s1, a1,Φ(s1), H1(s1, a1))
]
.

(4.9)

We minimize the negative similarity to ensure the states and the translated states
are similar as well as the state-action pairs and the translated state-action pairs stay
similar. With the above constraint, the misalignment of the learned translation model
will be substantially reduced. Also, as shown in Fig. 4.2(a), paired abstractions can
reduce the compounding error by reducing the translation error at each step.
Overall Loss and Algorithm. Integrating all the losses, we derive the final learning
objective of our model as follows:

Lall =λ0Lm_dyn_con(Φ, H
1) + λ1Ldom_con(H

1, H2)

+ λ2Laadv(H
1, H2, Da1 , Da2) + λ3Lsadv(Φ, Ds)

+ λ4(Lweak
s (Φ) + Lweak

a (H1))

(4.10)

where λ4 is the trade-off parameter for the weakly supervised loss.
Jointly optimizing all the loss functions in Eqn. (4.10) can cause the training to be

unstable [52]. Thus, we first learn the forward model T̂ 2 and the similarity functions
Φweak

1 − Φweak
Ks and Hweak

1 −Hweak
Ka . After the training of these networks converges, we

fix their parameters. We do not fine-tune these parameters during correspondence
learning since the parameters are already learned to differentiate similar or dissimilar
pairs and we can use them to decide whether the mapped state/state-action pair is
similar to the original state/state-action pair. Then, we iteratively train the networks
related to the state map: Φ and Ds, and the networks related to the action maps: H1,
H2, Da1 and Da2 . When we train Φ and Ds, we fix the parameters of H1, H2, Da1 ,
and Da2 , and vice versa. Such an iterative training paradigm avoids the state map
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and the action maps converging to unstable solutions. When training Φ and Ds or
training the action maps H1 and H2, and the discriminators Da1 and Da2 , we follow
the training paradigm of adversarial networks [16].

4.5 Experiments

In our experiments, we aim to demonstrate the efficacy of WeaSCL in different
correspondence learning settings including cross-morphology, cross-physics, and cross-
modality, and demonstrate that WeaSCL works well with different types of paired
abstractions in different environments.

We use WeaSCL-T to refer to our approach, where T corresponds to the final
horizon at which we enforce dynamics cycle-consistency. We compare WeaSCL-T with
baseline methods: DCC [52] and CC, which removes the dynamics cycle-consistency
in DCC, and several variants of WeaSCL: DCC-T and WeaSCL-1, where DCC-T
only adopts multi-step dynamics cycle-consistency without using paired abstractions
while WeaSCL-1 uses the paired abstractions but only uses single-step dynamics
cycle-consistency.

We show additional experimental details and more visualization results on our
website.

4.5.1 Cross-Morphology Demonstrations

Table 4.1: Morphology parameters and dimension of state and action spaces in the
HalfCheetah, Swimmer, and Ant.

Environment AgentM2 AgentM1

Morphology State Action Morphology State Action

HalfCheetah 2 legs 18 6 3 legs 24 9
Swimmer 3 links 10 2 4 links 12 3

Ant 4 legs 113 8 5 legs 135 10

Mujoco Environments. We conduct our experiments in Mujoco HalfCheetah,

https://sites.google.com/stanford.edu/weakly-supervised-correspond
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Swimmer, and Ant environments under a cross-morphology setting, where we create
different agents by varying the morphology. The morphology and the dimension of
state space and action space are shown in Table 4.1. We measure the similarity of
states using the x-axis location as the abstraction of the state. Since both state spaces
and action spaces are different, we train both the state map Φ and action maps H1

and H2.
The goal of correspondence learning is to learn a translation model to leverage

the optimal policy for the agentM1 to make decisions in the environment of agent
M2. We evaluate the performance of the translation model by the performance of the
translated policy inM2.

We train the similarity function for 100 epochs, the forward dynamics model for
10 epochs, and the translation model for 30 epochs. We use Adam optimizer with a
learning rate 0.001 for all the model training. For the trade-offs parameters, we use
λ0 = 15, λ1, λ2 = 1 and λ3 = 10. The trajectory pairs used for all three environments
are 1,000 each.

The results are shown in Table 4.2. For both DCC and our methods, using
a horizon of 5 for dynamics cycle-consistency achieves a much better performance
than a horizon of 1, which demonstrates the efficacy of multi-step dynamics cycle-
consistency. WeaSCL-5 and WeaSCL-1 outperform DCC-5 and DCC-1 respectively,
which demonstrates the efficacy of paired abstractions.
Simulated Robots. As shown in Fig. 4.5, we create two dynamics in the simulated
Panda Robot: the original 7-DoF robot arm, and a 5-DoF arm that fixes the third
and fourth joints of the 7-DoF arm (shown by red crosses). We define the paired
abstractions based on the end-effector position in the state (green arrows) or the joint
force in the action (purple arrows). We test two settings of paired abstractions: (1)
only using the end-effector position (Y s); (2) using both the end-effector position and
the joint force (Y s and Y a). Our goal is to translate the policy from 5-DoF to 7-DoF.

We show our results in Table 4.3. We observe that WeaSCL-5 outperforms the
baselines, DCC-1 and CC. WeaSCL-5 also outperforms the variants: WeaSCL-1 and
DCC-5, which demonstrates the efficacy of both kinds of weak supervision. We
also note that WeaSCL-5 with Y s and Y a outperforms WeaSCL-5 with Y s, which
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Table 4.2: The performance of the translated policy under different morphologies in
Mujoco environments.

Method HalfCheetah Swimmer Ant

CC -104.39±92.72 30.00±2.19 297.52±87.48
DCC-1 658.66±23.13 53.40±11.39 447.50±470.19

DCC-2 1005.52±44.12 64.92±5.43 669.94±72.54
DCC-3 1166.90± 50.67 71.70±3.53 762.43±1.92
DCC-5 1250.55± 51.66 65.19± 2.16 928.22± 1.96
DCC-10 1249.15±434.78 52.18±3.61 942.03± 2.61

WeaSCL-1 1284.61±109.47 69.59±13.88 969.28±1.03

WeaSCL-5 1455.08±63.59 86.14±2.46 971.08±2.10

Oracle 4380.75±97.30 126.19±2.42 991.56±1.98

demonstrates that WeaSCLcan handle similarities over multiple abstractions elegantly
and having access to similarities over multiple types of abstractions improves the
performance.

Table 4.3: The performance of the translated policy under different morphologies in
the simulated robot environment.

CC -315.09±115.74
DCC-1 -255.33±160.19

DCC-5 -233.47±103.19
WeaSCL-1 (Y s) -225.28±100.39

WeaSCL-1 (Y s and Y a) -219.88±121.11

WeaSCL-5 (Y s) -78.43±22.06
WeaSCL-5 (Y s and Y a) -73.07 ±42.19

Oracle -20.68±21.30

4.5.2 Cross-Physics Demonstrations

We conduct the experiments in Mujoco Hopper and Walker2d environments under a
cross-physics setting, where we create different agents by varying the physical factors
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Figure 4.4: Sample trajectories for the 4-link swimmer (left) and 5-legged ant (right).
The grey line is the positive x-axis, which direction the robot is supposed to move
toward. The oracle is only available inM2 (3-link swimmer and 4-legged ant).

Figure 4.5: Demonstrating the two robot arms with different degrees of freedom and the
paired abstractions of end-effector positions and joint forces.

in the environment. We vary the gravitational constant in the Hopper environment
and vary the friction of feet in the Walker2d environment. The exact value of the
gravitational constant and the friction of the agentM1 andM2 are in Table 4.4. Note
that only changing the physical parameters does not change the state and action spaces
but changes the transition, where taking the same action at a state will transition to
potentially different states, so we only learn the action maps to align the agents. Our
goal is to translate a policy across environments with different physical parameters.

We use confidence as the abstraction to define similarity, where confidence lies in
[0, 1] indicating how good a state, action pair is with respect to the reward function.
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Table 4.4: Physical parameters in the Hopper and Walker2d.

Environment Agent
M2

AgentM1

Setup1 Setup2

Hopper (Gravitational Constant) 9.8 0.5 5.0
Walker2d (Friction) 0.9 9.9 19.9

For example, if a state, action pair always appears in optimal trajectories, we regard
it as optimal and assign confidence 1 to it.

Here, we need trajectories with different confidence values for Ξ1 and Ξ2. For each
environment and physical parameter, we train 7 policies with different rewards, which
range from the random policy to the optimal policy. We then collect 10 trajectories
from each policy as the trajectory set. We compute the reward for each trajectory
and normalize the reward into [0, 1] by min-max normalization, where the normalized
reward is used as the confidence for each trajectory. For each state-action pair in a
trajectory, we use the trajectory confidence value as the confidence used for abstraction.
Then for all the state-action pairs in all trajectories, we randomly sample 1000 pairs
of state-action pairs with varying similarity as the dataset to learn the similarity
function.

We show the results of our method and baselines in Table 4.5. For DCC and our
method, we report the results of using the dynamics cycle-consistency for 1− 5 steps,
since the performance does not increase or even decrease for more than 5 steps. We
observe that our method with a proper number of steps for dynamics cycle-consistency
achieves the best reward in all the tasks. Note that in most of the tasks, only two
steps of dynamics cycle-consistency are sufficient to achieve the best performance,
which demonstrates that the proposed approach is computationally efficient.

4.5.3 Cross-Modality Demonstrations

We also conduct experiments on the real robot under a cross-modality setting, where
we translate across the visual observations and the joint states of a real Franka Panda
robot arm. Our goal is to predict the state of the robot (joint configurations) from
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Table 4.5: The performance of the transferred or translated policy under different
physics.

Method Gravity 0.5 Gravity 5.0 Friction 9.9 Friction 19.9

Direct 269.59±2.45 335.41±7.89 290.84±10.12 280.49±20.54
CC 61.19±39.91 83.26±155.79 178.93±219.81 236.15±72.39
DR 295.64±4.87 376.31±9.41 297.32±9.42 310.18±22.24

DCC-1 26.48±45.17 6.03±4.32 305.28±7.01 375.22±101.77

DCC-2 271.59±50.02 190.08±186.22 369.07±48.11 588.70±201.02
DCC-3 234.46±217.32 229.69±243.62 302.15±7.11 540.31±143.63
DCC-4 256.91±55.10 195.03±148.78 307.50±3.04 799.97±138.63
DCC-5 276.73 ±120.39 231.76±161.27 305.11±4.62 598.56±219.53

WeaSCL-1 208.14±189.65 143.72±180.01 321.04±14.40 587.73±117.49

WeaSCL-2 325.80±57.06 279.33±107.24 499.52±48.99 1052.62±224.62
WeaSCL-3 137.49±132.33 387.12 ±186.80 301.30±4.18 693.94±245.45
WeaSCL-4 129.05±84.62 283.38 ±184.15 308.94±2.39 674.47±122.79
WeaSCL-5 130.09±75.48 272.69±91.31 306.67±6.30 550.24±202.03

Oracle 1952.99±32.41 3060.55±21.72 3604.38±52.59 1632.18±22.86

the visual observation of the robot. Our abstraction here is the end-effector pose of
the robot in these two domains (ground-truth state and visual observations) and we
collect 100 similarity pairs to learn the similarity function. Note that the actions are
the same and we just need to learn the state map Φ, which takes the RGB images as
inputs and outputs the joint state of the robot. The visual observations are captured
by an external RGB camera with a third-person point of view. We collect random
trajectories of visual observations and joint configurations (not paired) on the robot
through teleoperation to train the state map Φ.

As shown in Figure 4.6, WeaSCL-5 achieves the lowest estimation error compared
to baselines CC and DCC-1 and also the variants DCC-5 and WeaSCL-1, which
demonstrates the efficacy of our approach in real robot applications.
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Figure 4.6: Top: An illustration of the real robot arm environments. Bottom: The
norm of joint differences on the robot.

4.6 Chapter Summary

In this chapter, to address the problem of learning from cross-domain demonstrations,
we aim to build correspondence between different agents. We first define correspondence
learning and introduce the background on dynamics cycle-consistency, the state-of-
the-art unsupervised correspondence learning method. To better trade-off between
the accuracy of correspondence learning and the annotation effort, we propose a
weakly supervised correspondence learning approach (WeaSCL) that leverages weak
supervision in the form of temporal ordering and paired abstraction data. This eases
the need for expensive paired data and enables more accurate correspondence learning.
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Experiment results show that WeaSCL outperforms the state-of-the-art correspondence
learning methods based on unpaired data.



Chapter 5

Feasibility Learning from Infeasible

Demonstrations

5.1 Infeasible Demonstrations

In the last chapter, we learn an optimal policy for the target agent by leveraging cross-
domain demonstrations from other agents. We enable the target agent to learn from
cross-domain demonstrations by building correspondence between agents. However,
not all the demonstrations in other agents have correspondence to the target agent.
Due to the different morphology and dynamics between the other agents and the
target agent, some trajectories from other agents cannot be achieved by the target
agent and thus we could not build correspondence between these trajectories to the
target agent. We call these trajectories infeasible demonstrations. which naturally
exist in the demonstrations collected from other agents.

Imagine a setting, where a set of demonstrations are collected on a 7 Degrees of
Freedom (DoF) robot arm shown in Fig. 5.1 to place a book on the empty area of
the shelf (on the left) without colliding with the books that are already placed on the
right side of the shelf. Later, we might decide to buy a different arm with 3 DoF (e.g.,
only the joints circled in green as shown in the figure are used). We would like to
learn a policy for this 3 DoF robot arm that can achieve the same task—placing the
book on the empty region of the shelf—using the originally collected demonstrations

66
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on the 7 DoF arm. In general, our goal is to enable using and reusing of data collected
on robots with different dynamics or embodiments to tackle the problem of lack of
in-domain data in robotics. However, the red trajectories that move around the stack
of books are not feasible for the 3 DoF robot arm. Imitating such trajectories may
cause the 3 DoF robot arm to maximally follow these trajectories and even collide
with the existing stack of books.

Therefore, it is crucial to identify and avoid trajectories that are far from feasible
for the imitator, and instead learn more from useful demonstrations, e.g., the blue
trajectories that go over the shelf that are still feasible for a robot with 3 DoF. To
avoid the influence of useless or harmful demonstrations from agents with different
dynamics, we rely on a feasibility score, which measures how feasible a trajectory is
for the imitator, and selects trajectories with high feasibility to imitate. For example,
the blue trajectories should have higher feasibility than the red trajectories in Fig. 5.1.

7-DoF Robot Arm (Demonstrator)

Demonstrations

3-DoF Robot Arm (Imitator)

w(⇠i)
<latexit sha1_base64="oFWJGG2rJFSylyvG8Ti8fFqbHNM=">AAAB73icbVBNSwMxEJ3Ur1q/qh69BItQL2W3CnosevFYwX5Au5Rsmm1Ds9k1yapl6Z/w4kERr/4db/4b03YP2vpg4PHeDDPz/FhwbRznG+VWVtfWN/Kbha3tnd294v5BU0eJoqxBIxGptk80E1yyhuFGsHasGAl9wVr+6Hrqtx6Y0jySd2YcMy8kA8kDTomxUvux3H3iPX7aK5acijMDXiZuRkqQod4rfnX7EU1CJg0VROuO68TGS4kynAo2KXQTzWJCR2TAOpZKEjLtpbN7J/jEKn0cRMqWNHim/p5ISaj1OPRtZ0jMUC96U/E/r5OY4NJLuYwTwySdLwoSgU2Ep8/jPleMGjG2hFDF7a2YDoki1NiICjYEd/HlZdKsVtyzSvX2vFS7yuLIwxEcQxlcuIAa3EAdGkBBwDO8whu6Ry/oHX3MW3MomzmEP0CfP31Lj5s=</latexit>

Figure 5.1: An example of imitating demonstrators with feasibility. The left image shows
that a set of demonstrations (blue and red trajectories) are available for the 7 DoF robot
arm. We aim to learn a policy for the 3 DoF robot (joints are circled in green) by learning
from the demonstrations of the 7 DoF robot (blue is feasible and red is infeasible). We learn
a feasibility score to reweight each demonstration to conduct imitation learning.

5.1.1 Problem Setting

In this problem setting, instead of learning from demonstrations collected on a single
demonstrator, we aim to learn the target robot policy from demonstrations collected
from N demonstrators with various dynamics. We formalize each demonstrator j, (1 ≤
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j ≤ N) as a standard Markov decision process (MDP):Md
j = ⟨S,Ad

j , T d
j ,R, ρ0, γ⟩. Ad

j

is the action space and T d
j : S ×Ad

j ×S → [0, 1] is the transition probabilities for each
demonstrator respectively.

Note that we assume that all the demonstrators and the target robot share the same
state space and initial state distribution but may have different transition functions
and action spaces. This is satisfied in many real-world applications. For example, we
may use a camera to capture the robot, and the camera images embed both the 3-dof
and 7-dof representation of the robots, along with their environment.

ρ0 is the shared initial state distribution for all MDPs. We also make the assumption
that the reward function is based on state transitions and is shared between the
demonstrators and the target robot, which is a common assumption used in prior
work [26, 10], and is usually satisfied since the demonstrators and the target robot
conduct the same task in the same context.

Different from our problem setting in Section 2.1, now we are given a set of
demonstrations collected from different demonstrators Ξj = {ξj1, . . . , ξjD}j∈{1...N} where
each trajectory is a sequence of states ξ = {s0, s1, . . . , sN}. We assume that the
optimal policy can be learned by imitating the useful demonstrations, which means
that if we remove all the demonstrations that are far from feasible, the remaining
useful demonstrations provide sufficient knowledge to learn an optimal policy. This is
a general assumption adopted by prior imitation learning works [2, 20, 26, 10]. The
violation of this assumption, as shown in prior works, leads to learning a suboptimal
policy. Note that we discard actions from the demonstrations instead of imitating the
state-action trajectories because different action spaces between the demonstrators
and the imitator make it impossible to imitate the actions.

Recall that there are two core challenges for imitation learning from demonstrations
of other agents: (1) How to imitate useful demonstrations with different dynamics,
(2) How to avoid harmful demonstrations misleading the imitator. In chapter 4, we
address the first challenge by learning about the correspondence between agents. In
this chapter, we aim to address the second challenge by learning a feasibility score
that measures how likely it is for a demonstration to be feasible for the imitator.
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5.2 Feasibility Based on Inverse Dynamics Function

Feasibility measures how likely it is for each state transition in the demonstration to
be generated by the target MDP. Formally, a state transition (st, st+1) is feasible if and
only if there exists an action at ∈ A in the target MDPM satisfying T (st, at, st+1) > 0.

However, we cannot simply apply this definition to our demonstrations to verify
feasibility. First, the transition probability function is usually unknown or difficult to
learn in most realistic robotics tasks, and thus we cannot directly use the function to
check for feasible actions. If we do not use the transition probability function, but
assume access to a simulator, where we can sample the next state given a state and
action – as is assumed by prior works [20, 48, 14, 35] – we would still need to search
over a large space of possible actions to verify the existence of action at for the state
transition (st, st+1) to be successful in the target MDP.

We instead propose computing the most probable action using an inverse dynamics
model of the target MDP fid : S ×S → A, which takes a state transition pair (st, st+1)

that could be generated by either the target MDP or the demonstrator MDP as
an input and outputs all the actions at that satisfy T (st, at, st+1) > 0. For every ξ

from the set of demonstrations provided by any demonstrator MDP, we initialize the
agent at the state s0, which is the initial state of ξ. We then make the agent take
an action a′t generated by fid at each time step to generate a new state trajectory
ξ′ = {s′0, s′1, s′2 . . . , s′N} that is achievable by the target MDP:

s′0 = s0, a′t = fid(s
′
t−1, st), t ≥ 1

s′t ∼ T (s′t−1, a
′
t, s

′
t), t ≥ 1

(5.1)

Learning Inverse Dynamics. If we assume access to an accurate inverse dynamics
model fid – meaning that fid gives the correct action for a feasible state transition
and outputs “None” for an infeasible state transition, we can detect the infeasible
trajectories based on the “None” output. However, such a binary feasibility metric
cannot differentiate between nearly feasible and infeasible trajectories, where the
former is useful for learning and the latter does not have much learning value. So
instead we aim to learn a fid that outputs the correct action if the state transition is
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feasible while still outputting the closest action when the state transition is infeasible.
We model fid as a neural network and train it on a randomly sampled set of trajectories
Ξf = {ξf} from the target MDP. We emphasize that similar to prior imitation learning
works [20, 48, 14, 35], we assume access to a simulator for the target MDP, where we
can sample feasible but random trajectories. We learn fid using a regression loss:

min
fid

E(st,a,st+1)∼ξf ,ξf∼Ξf
L1;smooth(fid(st, st+1), a). (5.2)

Computing the Feasibility Score. Here, the trained fid will output similar actions
if the input state transition is similar to a state transition seen in the training data.
With the learned fid, for every trajectory ξ – even if it is infeasible – we can compute
a corresponding trajectory ξ′. In addition, we can compute a distance metric between
the two trajectories ξ and ξ′, F (ξ, ξ′), where lower distances correspond to higher
feasibility scores. We compute the feasibility score by normalizing this distance within
a range [dmin, dmax]:

wf (ξ) =


1 F (ξ, ξ′) < dmin

1− F (ξ,ξ′)−dmin
dmax−dmin

dmin ≤ F (ξ, ξ′) ≤ dmax

0 F (ξ, ξ′) > dmax

(5.3)

Here, ξ′ is a corresponding trajectory to ξ generated by the inverse dynamics fid.
Further, we can choose F (ξ, ξ′) to be any sequence metric between the two trajectories.
In our experiments, we computed the mean of the l2 distance between each pair of
states in ξ and ξ′. The proposed continuous feasibility score can measure different
degrees of feasibility and preserve nearly feasible trajectories that can be useful for
learning a policy for the target agent.
Discussion of Feasibility Score. Using our feasibility measurement, the more
infeasible transitions contained in ξ are, the deviation between ξ′ and ξ becomes
larger, and hence it would be less likely that the trajectory is drawn from the target
MDP. A possible drawback of our feasibility score is compounding errors from our
inverse dynamics model fid. To address this problem, we normalize the distance
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between the trajectories F (ξ, ξ′) using dmin and dmax. Here, dmin models the lowest
compounding error that could be achieved by a feasible trajectory, while dmax is
the highest compounding error. Thus, our feasibility measure can assign non-zero
feasibility to any feasible trajectories even with compounding errors from the inverse
dynamics.

To set two threshold values, we design the method as follows. First, dmin sets
the minimum distance between ξ and ξ′, and any trajectory with distance smaller
than dmin will be assigned feasibility of 1. We set dmin by taking the minimum in the
sampled feasible trajectories Ξf : dmin = minξf∈Ξf

F (ξf , ξ
′
f ).

Second, dmax sets the maximum distance between ξ and ξ′ that can be tolerated.
There are two clear approaches for computing dmax: the maximum distance in the
demonstration trajectories maxξ∈Ξ F (ξ, ξ′) and the maximum distance in the sampled
feasible trajectories maxξf∈Ξf

F (ξf , ξ
′
f ). Here, ξ′ and ξ′f are computed using the inverse

dynamics as in Eqn. (1) in the main text. The former can be too large and can assign
positive feasibility to harmful and completely infeasible trajectories at times. On
the other hand, the latter may filter nearly feasible trajectories, which are useful for
imitation learning. Instead of these two extreme measures, we propose estimating
dmax from the environment. For every trajectory ξf in Ξf , we derive a trajectory
ξ′′f = {s′′0, s′′1, · · · , s′′N}:

s′′0 = s0, a′′t = fid(s
′′
t−1, st), t ≥ 1

ssample
t ∼ T (s′′t−1, a

′′
t , s

′′
t ), t ≥ 1

s′′t = ssample
t +∆s.

(5.4)

We perturb the state at each step with a ∆s, where |∆s| ≤ δ, and then we set dmax as
the max distance maxξf∈Ξf

F (ξf , ξ
′′
f ). We note that ξ′f is the corresponding trajectory

for ξ while ξ′′f is a trajectory with perturbation δs over the states of ξ. This modeling
allows us to know that a distance smaller than dmax means the trajectory is within
δ state averaged distance from a feasible trajectory. We can control δ in different
environments to decide if a trajectory should be assigned positive or zero feasibility
weights.
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5.3 Feasibility Learned by Feasibility-MDP

The method to learn feasibility in Sec. 5.2 requires the inverse dynamics function,
which is not always available for different environments. Even though the inverse
dynamics function could be learned from transitions in the target environment, it
is hard to collect sufficient transitions to cover the whole state-action space. Thus,
we develop a feasibility-MDP to learn the feasibility only by interacting with the
target environment without other requirements. Specifically, we model the imitator
environment as an MDP and build a feasibility Markov Decision Process (f-MDP)
based on the imitator’s MDP and the trajectories provided by the demonstrator. The
optimal policy for the f-MDP maximally follows the behavior of the demonstrations
but is limited by the imitator’s environment. This optimal policy helps assign a
feasibility score over the demonstrations.

The feasibility of a trajectory depends on the feasibility of each state transition
in the trajectory, i.e., if (st, st+1) is feasible for all time steps. A state transition
(st, st+1) is feasible when there exists an action at ∈ A such that T (st, at, st+1) = 1

for deterministic transitions or T i(st, at, st+1) > 0 for stochastic transitions. In this
section, we discuss the deterministic MDP setting and discuss the stochastic setting
in Appendix.

Feasibility can be directly measured by a perfect inverse dynamics model f :

S × S → A that takes a state transition (st, st+1) ∈ S × S as the input and outputs
the action at ∈ A that achieves the transition if feasible or outputs ‘Infeasible’.
However, having access to this model is often non-trivial and such a binary feasibility
measurement as f discards all infeasible demonstrations without considering any useful
information from slightly infeasible trajectories.

Our goal is to learn a policy π : S → A for the imitator to maximally achieve the
state transitions in the demonstrations. This means that if the state transition (sdt , s

d
t+1)

from a demonstration is feasible, the next state produced by π, i.e., st+1 = T (sdt , π(sdt ))
should be equal to sdt+1. Otherwise, we would like the policy to output an action
that ensures the next state st+1 is as close as possible to the next state from the
demonstration sdt+1. Therefore, the distance between st+1 and sdt+1 can serve as a
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Figure 5.2: The illustration and comparison of one-step f-MDP and trajectory f-MDP. The
blue state transition and trajectory are from the demonstrations while the orange state
transition and trajectory are rollouts in the f-MDP. One-step f-MDP collects the states in the
Former Set and uses the uniform distribution over the states as the initial state distribution.
Trajectory f-MDP collects the initial state of all the demonstrations and uses a uniform
distribution over them as the initial state distribution.

measure of feasibility, where a smaller distance corresponds to a higher likelihood
of feasibility. To learn this policy, we design a feasibility MDP (f-MDP), where we
ensure that the optimal policy of the f-MDP satisfies the above requirement. f-MDP
is defined as M f = ⟨S,A, T ,Rf , ρf0 , γ

f⟩. We will now discuss our choices for the
components of f-MDP.
One-step f-MDP. First, recall that our goal is to learn a policy for the imitator
to maximally achieve the state transitions in the demonstrations. So the policy
should be learned in an environment with the same state-action space and transition
probability as the imitator. We would like the reward of the f-MDP to encourage
maximally achieving the state transitions in the demonstrations. Let us first collect
all the state transitions T = {(sdt , sdt+1)} in all of the demonstrations. We define the
Former Set to be the set of states in the demonstrations that one can transition from:
TF = {sdt : (sdt , sdt+1) ∈ T}. The initial state distribution ρf0 can be defined uniformly
over the Former Set as Uniform(TF ). Here, we assume that all the states in the Former
Set can be visited by the imitator. We define the reward of a One-step f-MDP so that
it matches the one-step transitions from the Former Set:

sdt ∼ Uniform(TF ), s = sdt , s′ = T (s, a), Rf (s, a, s′) = −fdis(s
′, sdt+1), (5.5)
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where (sdt , s
d
t+1) is a state transition in the demonstrations and a ∈ A is sampled from

the action space of the f-MDP. fdis is a function that measures the distance between
the states (e.g., the L2 distance). We define the reward to penalize the distance
between s′ and sdt+1.
Trajectory f-MDP. The one-step f-MDP suffers from an important shortcoming:
the assumption that all states in the Former Set must be visited by the imitator
can be violated because the demonstrators have different dynamics from the imitator
and some demonstration states can never be reached by the imitator. So we cannot
set Uniform(TF ) as the initial state distribution for the f-MDP. We instead collect
the initial state sd0 of all the demonstrations, T0 = {sd0}, and define the initial state
distribution of the Trajectory f-MDP as Uniform(T0). Since all the demonstrators and
the imitator share the initial state distribution, all states in T0 can be visited by the
imitator. We define the reward as:

sd0 ∼ Uniform(T0), s0 = sd0, st+1 = T (st, a), Rf (st, a, st+1) = −fdis(st+1, s
d
t+1),

(5.6)
We use the L2 distance for fdis in our experiments. Similar to the one-step f-MDP
a ∈ Ai is sampled from the action space of the imitator.

Here we use L2 distance between states in the reward function but this does not
mean that L@ distance is not the only choice. We can change the distance depending
on the specific state space. For example, for a state space with unit vectors, we can
use cosine distance as the distance metric. We investigate the influence of different
distance functions in Sec. 5.4.3 in the Appendix.
Learning Feasibility. Given the Trajectory f-MDP defined above, for each demon-
stration trajectory ξ, the highest reward achieved in this f-MDP reflects the feasibility
score of the trajectory. We use reinforcement learning to learn the optimal policy
of the Trajectory f-MDP, π∗. We then derive the feasibility of each demonstration
trajectory ξ as a function of the trajectory f-MDP reward:

w(ξ) = exp

(
−∑N

t=1(γ
f )tfdis(st, s

d
t )− C

σ

)
. (5.7)
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st is the state at step t in the rollout derived by the policy π∗. We use an exponential
function of the cumulative reward since the cumulative reward is always negative and
the exponential function can bound the feasibility in the range of [0, 1]. The parameter
C is used to shift the function to avoid the situation where the cumulative reward is
extremely negative, while the parameter σ controls how low the reward can be, and
when a demonstration can be fully filtered out by assigning a feasibility of close to 0.
In practice, C is usually set as the maximal cumulative reward over all demonstrations
to ensure the maximal feasibility is 1.

For the feasibility of each state transition (sdt , s
d
t+1), we use the feasibility of the

trajectory it belongs to: w((sdt , s
d
t+1)) = w(ξi), where (sdt , s

d
t+1) ∈ ξi. We do not use

the state distance at each time step between st+1 and sdt+1 as in the One-step f-MDP
because such measurement suffers from the fact that within a trajectory, the reward
of later steps is influenced by former steps. For example, if st diverges from sdt , st+1

will diverge more from sdt+1. So the per-step reward is an unfair measure of feasibility
for the state transition (sdt , s

d
t+1) at different time steps t. Therefore, we use the

accumulative reward of the whole trajectory as our feasibility measure, where all the
state transitions share the same value.

The discount factor γf is usually set as γf < 1 to reduce compounding errors.
Specifically, the length of a rollout in the f-MDP is the same as the corresponding
demonstration, which can be very long. If the state in the rollout starts to diverge
from the demonstration trajectory at t, meaning that ∥st − sdt ∥ > 0, the steps after
time step t even diverge more from the demonstration. This makes the trajectory
reward for all the infeasible trajectories very low and does not allow for discriminating
among different infeasible trajectories. Therefore, we set a discount factor of γf < 1

to discount or even ignore the trajectory reward at later steps.
Leveraging our Trajectory f-MDP design, feasible trajectories still receive the max-

imal reward of 0 since each state in the rollout will perfectly match the demonstration
thus having a feasibility of 1 as in Eqn. (5.7). Instead, infeasible trajectories receive
negative rewards leading to smaller feasibility scores, which reflect how far away the
demonstration is from the closest feasible trajectory.

One may worry about the time complexity of our approach since we need additional
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RL training to learn an optimal policy for the f-MDP. However, the f-MDP is a lot
simpler compared to the imitator’s MDP since the initial distribution is reduced from
the distribution of all possible states in the demonstration set to a discrete distribution
over the initial states of the demonstrations. This can simplify the time complexity of
finding the optimal policy for the f-MDPs.
Algorithm. Using the feasibility metric in Eqn. (5.7), we assign each state transition
with the same feasibility of the trajectory it belongs to. Directly weighing the imitation
loss as [48] may lead to gradients that are close to 0 if a batch of data all has low
feasibility. This can make the algorithm inefficient by wasting samples from many
iterations. Instead, for more efficient training, we define a discrete probability distribu-
tion pw over the collection of state transitions in all the demonstrations: T , where the
probability of a state-transition (sdt , s

d
t+1) as pw((s

d
t , s

d
t+1)) =

w((sdt ,s
d
t+1))∑

(sdt′ ,s
d
t′+1)∈T

w((sd
t′ ,s

d
t′+1

))
.

State transitions with larger feasibility will be sampled more often. Using the sampling
distribution pw, we can embed our method into any imitation learning algorithm to
enable learning from demonstrations with different dynamics.
Sampling More Demonstrations with the Feasibility Score. When the existing
useful demonstrations are too scarce to learn a well-performing imitation learning
policy, we need to acquire more demonstrations from the demonstrators. But collecting
new demonstrations can be expensive, so we often can only acquire a limited budget
of demonstrations. We thus need to collect the most useful demonstrations within
this limited budget. The proposed feasibility metric provides a criterion to decide
the similarity between the imitator and each demonstrator. If a demonstrator has a
higher similarity, we sample more from this demonstrator because its demonstrations
are more likely to be feasible. Specifically, we create a probability distribution pj over
all demonstrators:

pj =

1
|Ξj |
∑

ξj∈Ξj w(ξj)∑N
j=1

1
|Ξj |
∑

ξj∈Ξj w(ξj)
. (5.8)

We repeatedly and independently query the demonstrator j according to pj and collect
a demonstration. The proposed sampling strategy samples more demonstrations from
closer demonstrators. We empirically show that the sampling strategy derived from
our feasibility performs better than uniform sampling or using other feasibility metrics
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as in [10].
Choice of Discount Factor The choice of the discount factor γf depends on how
fast the compounding error increases with respect to the number of steps in the
environment. Faster increasing compounding errors need smaller γf . In practice, this
depends on the scale of the ‘movement’ of the agent at each step. For example, for a
robot arm, if each joint can only move at a small angle at each step, we can set γf

to be larger or if each joint can move at a larger angle at each step, γf should be set
smaller. In our experiments, we fix the γf = 0.9, and empirically it works well for all
the environments.
The Extension to Stochastic MDPs In our main text, we discussed the determin-
istic MDP setting as all our experiments are in the deterministic setting, but here
we would like to extend the discussion to the stochastic MDP case. In a stochastic
MDP, our goal is still to learn a policy π : S → A for the imitator to maximally
achieve the state transitions in the demonstrations. This means that if the state
transition (sdt , s

d
t+1) from a demonstration is more likely to be feasible, the expected

distance between the next state st+1 produced by π and sdt+1 should be small, i.e.,
Est+1∼T (sdt ,π(s

d
t ))
[fdis(st+1, s

d
t+1)] should be small. Therefore, the expected distance be-

tween st+1 and sdt+1 can serve as a measure of feasibility, where a smaller distance
corresponds to higher feasibility.

Under a feasibility metric defined by the expected distance, we can use the same
design of f-MDP as the deterministic MDP case: M f = ⟨S,A, T ,Rf , ρf0 , γ

f⟩. The
state space, the action space, and the transition probability are all the same as the
imitator’s. The initial state distribution is defined as Uniform(T0). The reward is
defined as:

sd0 ∼ Uniform(T0), s0 = sd0, st+1 = T (st, a), Rf (st, a, st+1) = −fdis(st+1, s
d
t+1).

(5.9)
Maximizing the expected return in the f-MDP in such a design will minimize the
expected state distance between the learned policy and the demonstrations, which
matches our definition of feasibility. After we learn the optimal policy π∗ for the
f-MDP, we can derive the feasibility for each trajectory ξ with the expected state
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distance between the demonstration and the policy:

w(ξ) = exp

−Est∼π∗

[∑N
t=1(γ

f )tfdis(st, s
d
t )
]
− C

σ

 . (5.10)

In our experiments, we only consider the case where the MDP is deterministic.

5.4 Experiments

We experiment with four MuJoCo environments, a simulated Franka Panda Arm,
and a real Franka Panda Arm. We also show results on various compositions of
demonstrations of different dynamics and the performance gain when we are given a
larger budget to collect demonstrations. We compare our approach with a standard
imitation learning algorithm: GAIL [20], imitation learning from demonstrations with
different dynamics methods without a measure of feasibility: SAIL [26], and with
a feasibility score: ID-Feas [10], which uses an inverse dynamics model to estimate
feasibility.

5.4.1 MuJoCo Experiments

𝛼!𝛼"

(a) Swimmer

𝜷

(b) Walker2d

𝛾! 𝛾"

(c) HalfCheetah

𝑔

(d) Hopper

Figure 5.3: Illustration of different dynamics in (a) Swimmer: varying the joint limit of the
front and back joints (αf and αb). (b) Walker2d: varying the friction of the feet (β). (c)
HalfCheetah: varying the joint control force of the front and back joints by multiplying a
factor γf and γb with the front and back joint force. (d) Hopper: varying the gravitational
constant respectively.

Swimmer. The swimmer agent has three links and two joints. The goal of the
agent is to move forward by rotating the joints. As shown in Fig. 5.3(a), we create
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different dynamics by setting the joint limit of the front and the back joints, denoted
by (αf , αb). The original Swimmer environment has (αf , αb) = (100◦, 100◦). We
create four demonstrator environments (αf , αb): (i) (100◦, 12◦), (ii) (100◦, 20◦), (iii)
(100◦, 100◦), and (iv) (10◦, 100◦). We also create the imitator environment by setting
(αf , αb) = (100◦, 10◦). The demonstrators (i) and (ii) are closer to the imitator in
terms of their dynamics, while the demonstrators (iii) and (iv) are farther.
Walker2d. The Walker2d is an agent with two legs where each leg consists of 3 joints.
We create different dynamics by using different frictions β for the feet, i.e., the link
that touches the ground. The original Walker2d uses β = 0.9. We create two settings
to show the high friction and low friction of the imitator with a mix of frictions for
the demonstrators. In the first setting, there are four demonstrators: (i) β = 19.9, (ii)
β = 9.9, (iii) β = 0.9, and (iv) β = 0.7. The imitator has β = 24.9. In the second
setting, there are four demonstrators: (i) β = 29.9, (ii) β = 19.9, (iii) β = 1.1, and
(iv) β = 0.7. The imitator has β = 0.9.
HalfCheetah. The HalfCheetah is an agent with two legs at the front and back of
the body, where each leg consists of three joints. We create different dynamics by
varying the control force limit of joints of the front leg and back leg, where we multiply
a factor γf with the original control force limit of the front leg and multiply γb with
the limit of the back leg. We create two settings, where the demonstrators have low
and high similarities with each other. In the first setting, there are four demonstrators
with (γf , γb): (i) (0.05, 1), (ii) (0.5, 1), (iii) (1, 0.5), and (iv) (1, 0.05). The imitator
has (γf , γb) = (0.01, 1). In the second setting, there are four demonstrators with
(γf , γb): (i) (0.01, 1), (ii) (0.05, 1), (iii) (1, 0.05), and (iv) (1, 0.01). The imitator has
(γf , γb) = (0.01, 1).
Hopper. The Hopper is an agent with one leg consisting of 3 joints. We create
different dynamics by using different gravitational constants g. The original Hopper
uses g = 9.81. We create four demonstrator environments: (i) g = 20.0, (ii) g = 9.81,
(iii) g = 5.0, and (iv) g = 2.0. We also create the imitator environment by setting
g = 15.0.

The detailed composition of demonstrations for all four environments is in Table 5.1.
We design the composition of demonstrations to ensure that directly performing
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Table 5.1: The composition of demonstrations for each environment

Environment Number of Demonstrations

i ii iii iv

Swimmer 50 50 500 500
Walker2d (first setting) 50 50 500 500

Walker2d (second setting) 500 500 10 10
HalfCheetah (first setting) 25 25 500 500

HalfCheetah (second setting) 500 500 25 25
Hopper 50 50 500 500

imitation learning on all the demonstrations cannot learn an optimal policy as otherwise,
we do not need to consider the problem of learning from demonstrations from agents
with different dynamics.
Implementation Details. To implement our algorithm, we use TRPO [39] as the
RL algorithm to learn the optimal policy from f-MDP, and we use the GAIL from
Observation algorithm [46] as our imitation learning technique to learn the optimal
policy from the reweighted demonstrations. For each demonstration, we create a
separate f-MDP for its demonstrations and train an optimal policy for the f-MDP to
generate the feasibility for its demonstrations.

Compared to the final imitation learning algorithm, which requires about 7× 107

interactive steps with the environment to converge, learning the optimal policy from
f-MDP only needs about 5 × 105 time steps, which is significantly smaller. This
indicates that the proposed feasibility learning is efficient even with an additional RL
learning process.

For all the Mujoco environments, we evaluate the expected return of each policy
by rolling out 100 trajectories in the environment with the policy and compute the
average expected return of the 100 trajectories. We run each experiment for 5 times
and show the mean and the standard deviation.
Results. We show the expected return with respect to the number of steps for the
four different environments in Fig. 5.4. We show the results of the second setting for
the Walker2d and the HalfCheetah in the Appendix. We observe that our proposed
feasibility achieves the best performance among all the methods. The highest p-value
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(f) Hopper Results

Ours ID-Feas SAIL GAIL

Figure 5.4: The expected return of the four MuJoCo environments.

comparing our method to baselines is 0.116 with ID-Feas for Swimmer, 2.55e − 14

with GAIL for Walker2d First Setting (statistically significant), 0.297 with ID-Feas
for the Walker2d Second Setting, 0.188 with ID-Feas for HalfCheetah First Setting,
0.0037 with ID-Feas for the HalfCheetah Second Setting (statistically significant) and
0.026 with GAIL for Hopper (statistically significant). In particular, our method
outperforms ID-Feas, which indicates that the proposed feasibility more accurately
filters out far from feasible demonstrations. SAIL performs even worse than GAIL,
this is because SAIL can more strictly follow the state sequences of demonstrations
than GAIL including those far from feasible demonstrations. Our demonstration set
is composed of a high percentage of demonstrations from unrelated dynamics, which
can mislead SAIL’s learned policy.
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5.4.2 Simulated and Real Robot Arm Experiments

Setup. We create a simulated robot arm based on a Panda Robot Arm implemented
in the PyBullet [12] and a real robot arm environment using a Franka Panda Arm1.
As shown in Fig. 5.6(a), we create a task of moving a book to the shelf but the closest
region on the shelf is full. So we need to move the book to the empty area of the
shelf without colliding with the shelf and the existing books on the shelf. We create
two dynamics for the robot arm: using a 7-DoF control which can move freely in the
3D space, and using a 3-DoF control, which is limited to moving on the red plane
area. We collect demonstrations from both 7-DoF and 3-DoF controllers and aim to
learn an optimal policy for the 3-DoF robot. The demonstration set is composed of 5
trajectories from the 3 DoF Panda robot arm with disabled joints and 43 trajectories
from the 7-DoF Panda arm for both the simulated and the real arm environments.
Implementation Details. To implement our algorithm, we use TRPO [39] as the
RL algorithm to learn the optimal policy from f-MDP. To learn the optimal policy
from the reweighted demonstrations, we learn a beta-VAE [19] to imitate the state
transition sampled from the reweighted distribution of state transitions pw. After
learning the state transitions, we recover the joint actions from the changes in the
end-effector’s position using inverse kinematics.

Compared to learning the beta-VAE model, which requires about 2.56 × 104

interactive steps with the environment to converge, learning the optimal policy from
f-MDP only needs about 5.12× 103 time steps, which is negligible with respect to the
imitation learning algorithm. This indicates that the proposed feasibility learning is
efficient even with an additional RL learning process.

For evaluation, we use two metrics: (1) The expected return based on a reward:
r = −s− 10000h+ 5000g, where r is the reward, s is the number of steps, h ∈ {0, 1}
represents whether the robot hits any object in the environment, and g ∈ {0, 1}
represents whether the robot achieves the goal. The reward penalizes collision with
the shelf and existing books while rewarding the successfully moving the book to the
empty area of the shelf within the time limit. (2) The success rate of finishing the

1https://www.franka.de
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Figure 5.5: (a) The illustration of different dynamics in the simulated robot arm
environment. The 7 DoF robot arm can move in the whole 3D space while the 3 DoF
arm can only move in the red plane; (b-c) The bar plot for the expected return and
the success rate for the simulated robot arm environment; (d) Sampled trajectories
for different methods in the simulated robot arm environment.

task over 100 trials.
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Figure 5.6: (a) Illustration of different dynamics in the real robot arm environment. (b-c)
The bar plots show the expected return and success rate compared to other methods. (d)
Sampled trajectories using different methods.

Results. We observe that the proposed approach outperforms the baseline methods
both in expected return and success rate as shown in Fig. 5.5 and 5.6. For the
simulated environment, the highest p-value for the expected return is 7.252× 10−9

and the success rate is 1.047× 10−8 (both with ID-Feas), which are both statistically
significant. For the real robot environment, the highest p-value for the expected return
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is 2.432× 10−7 and the success rate is 3.534× 10−8 (both with ID-Feas), which are
statistically significant. The sampled trajectories in Fig. 5.5(d) show that the proposed
approach achieves an efficient trajectory successfully moving the book to the empty
area of the shelf.

5.4.3 Analysis

We conduct experiments with varying compositions of demonstrations and investigate
the performance of different approaches when we have the budget to acquire additional
demonstrations. We show the results of varying the number of demonstrations from
all demonstrators in the Appendix.

200 400
Number of Demonstrations

0

50

100

E
xp

ec
te

d 
R

et
ur

n

(a) Swimmer

200 400
Number of Demonstrations

0

1000

2000

3000

E
xp

ec
te

d 
R

et
ur

n

(b) Walker2d

200 400
Number of Demonstrations

0

2000

E
xp

ec
te

d 
R

et
ur

n

(c) HalfCheetah

200 400
Number of Demonstrations

0

2000

E
xp

ec
te

d 
R

et
ur

n

(d) Hopper

Ours ID-Feas SAIL GAIL

Figure 5.7: (a-d) The expected return when increasing the number of demonstrations
from agents with unrelated dynamics. The results in Fig. 5.4 correspond to using 500
demonstrations from each unrelated dynamics. In both of these settings, there will also be a
fixed number of demonstrations from agents with related dynamics as shown in Appendix.

Varying the Number of Demonstrations from each Unrelated Demonstrator.

For the first three experiment settings in the Mujoco environment, we have two
demonstrators with similar dynamics to the imitator and two demonstrators with
far apart dynamics. We vary the number of demonstrations from the far apart
demonstrators to investigate their influence on the different methods. We conduct
experiments on the first setting for the Swimmer, Walker2D, HalfCheetah, and Hooper
and report the results in Fig. 5.7(a), 5.7(b), 5.7(c) and 5.7(d). With an increasing
number of demonstrations from the far apart demonstrators, the expected return of
all the methods decreases, while our method shows the best performance consistently
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across different numbers of demonstrations. This demonstrates that our feasibility
can effectively filter out far from feasible demonstrations and ensure the policy learns
from useful demonstrations.
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Figure 5.8: The expected return with a varying budget of additional demonstrations
in Swimmer.

Performance with a Budget of Additional Demonstrations. We now consider
a setting, where we start with a limited set of demonstrations, but acquire more
demonstrations under a limited budget. Our feasibility metric can assess how likely
it is for a demonstrator to produce feasible demonstrations, and hence can help us
select which demonstrator to query for more demonstrations. We start with one
demonstration from each demonstrator in the Swimmer environment and evaluate
the performance as we add demonstrations. For our method and ID-Feas, we can
acquire demonstrations proportional to the computed feasibility score. We compare the
expected return with demonstrations selected based on feasibility (Ours, ID-Feas) to
the expected return with demonstrations uniformly acquired from each demonstrator
(Ours-Uniform, ID-Feas-Uniform). We further compare with SAIL and GAIL, where
no feasibility is defined and we uniformly acquire demonstrations. As shown in Fig. 5.8,
Ours outperforms ID-Feas, which demonstrates that the proposed feasibility can better
reflect how likely each demonstrator produces feasible demonstrations and acquire
more demonstrations from helpful demonstrators. Ours outperforms all the other
methods including Ours-Uniform (although not with statistical significance), which
indicates that the demonstrations acquired based on the feasibility gain more useful
information.
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Table 5.2: The performance of varying percentages of demonstrations used with respect
to the original setting for Swimmer and Walker2d First Setting.

Method Swimmer Walker2d

20% 50% 100% 20% 50% 100%

GAIL 40.0±34.3 37.9±35.2 30.9±23.5 276.9±18.3 313.1±63.0 261.1±5.6
SAIL -7.7±19.7 -5.5±24.6 -3.0±28.4 8.5±17.5 -5.3±56.4 19.0±30.1
RAL 23.1±33.9 30.6±28.1 48.2±39.0 244.3±27.4 261.0±46.7 227.0±24.2
Ours 68.2±24.7 76.4±22.1 74.3±20.1 3137.6±50.2 3127.0±30.7 3144.3±23.5

Table 5.3: The performance of varying percentages of demonstrations used with respect
to the original setting for HalfCheetah First Setting and Hopper.

Method HalfCheetah Hopper

40% 60% 100% 20% 50% 100%

GAIL 2464.9±460.2 2597.2±399.0 2443.6±440.7 2798.3±351.1 2996.6±623.2 3009.6±362.4
SAIL -556.7±365.8 -503.3±299.3 -603.0±389.6 -252.6±432.6 -1622.2±1780.1 -7.00±11.4
RAL 2604.4±423.1 2515.3±311.0 2594.4±508.7 2040.3±408.3 2108.9±611.9 1916.1±750.4
Ours 2716.7±301.6 2812.4±261.2 2830.6±292.6 3273.3±180.2 3351.0±146.3 3329.6±115.2

Varying the Number of All Demonstrations We vary the number of demon-
strations from all demonstrators. We conduct experiments on the first setting of all
the Mujoco environments. For the Swimmer and Walker2d environments, we test
with 20% and 50% of the original demonstrations. For the HalfCheetah environment,
we test with 40% and 60% of the original demonstrations since we have much fewer
demonstrations (25 vs 50) from the demonstrators similar to the imitator. As shown
in Table 5.2 and 5.3, we observe that our approach outperforms all the other methods
when having access to a different number of demonstrations.

Table 5.4: The expected return of the learned policy in the Swimmer environment
(with standard deviation).

Method Expected Return

GAIL [20] 31.20±22.25
SAIL [26] 0.56±4.27
DCC [52] 5.32±3.43

ID-Feas [10] 48.96±38.50
Ours 74.89±19.68
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Figure 5.9: The expected return with respect to the number of steps with different
choices of distance metrics.

Discussion of the Choice of Distance Functions We use L2 distance between
states in the reward function in Eqn. (5.5) and (5.6) in the main text and in all the
experiments. This is because, in all our environments, the L2 distance can accurately
measure the distance between states. However, this does not mean that the distance
metric in our reward of f-MDP is restricted to the L2 distance. We can change the
distance depending on the specific state space. For example, for a state space with
unit vectors, we can use cosine distance as the distance metric.

In Fig. 5.9, we show the expected return of our method by using different distances
in the Swimmer environment. We use L1 distance and Cosine distance (the cosine
of the angles between two state vectors) as examples. We observe that L1 distance,
which is another distance derived by norm, performs close to L2 distance, but Cosine
distance performs worse than L2 distance because Cosine distance only cares about
the distance on the angle but ignores the scale of the vectors, while in Swimmer,
the scale of the states is also important. The results show that the choice of this
distance function is flexible and depends on the specific choice of the state space in
our problem.
Comparison with Mapping-Based Methods Mapping-based methods translate
the demonstrations across different environments by learning state mappings and
action mappings [52], which can be used in our problem setting by mapping the source
demonstrations to the target environment. However, our problem setting does not
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ensure that there exists a mapping between the demonstrators and the imitator, which
violates the assumption of the mapping-based methods. We thus do not include any
mapping-based methods in our experiments in the main body of our work. However,
here as an additional experiment, we compare our method with the state-of-the-art
mapping-based method, DCC [52].

DCC requires random trajectories from both the demonstrators and the imitator
to learn a mapping, but we do not have access to the demonstrators’ environment and
only have access to demonstrators’ demonstrations. So we use the demonstrations
and the imitator’s random trajectories as the input to DCC. As shown in Table 5.4,
the performance of DCC is much worse than our method and even worse than GAIL.
This is because DCC itself is a good mapping-based method but mapping-based
methods are not quite suitable for our problem setting. In fact, there should not
exist a mapping between demonstrations and the imitator’s random trajectories.
Building such a mapping causes a severe mismatch between states and actions of
different environments and makes the translated demonstrations distort the original
demonstrations.

Table 5.5: The average expected return of demonstrations in different environments
and the expected return of our method.

Swimmer Walker2d HalfCheetah Hopper Simulated
Robot

Real
RobotFirst Second First Second

Demonstrations 106±3 3098±118 3720±336 3229±170 3337±67 3460±87 1823±110 2531± 362
Ours 75±20 3147±10 3424±645 2832±291 3142±89 3330±115 2127±5053 2746±2712

Comparison with the Collected Demonstrations We compare the expected
return of our approach with the demonstrations in Table 5.5. We observe that
in the first setting of Walker2d environment, Hopper environment, the simulated
robot, and the real robot environments, our approach performs comparably to the
expected return of demonstrations, which are optimal demonstrations for different
demonstrators. In the Swimmer, the second setting of Walker2d and the HalfCheetah
environments, the performance is worse than the demonstrations. This is because only
a few demonstrations are feasible for the imitator and that may not be enough to learn
an optimal policy. However, the margin between our approach and the demonstrations
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is still not large. The results show that the proposed feasibility can select useful
demonstrations for the imitator to imitate.

5.5 Chapter Summary

In this chapter, we aim to develop algorithms to remove the influence of infeasible
demonstrations when learning from demonstrations of other agents. We first define
a continuous feasibility measure by using a distance function based on the inverse
dynamics model that allows for reproducing the trajectories. However, it is difficult
to collect sufficient transitions to cover the whole state-action space to learn the
inverse dynamics function. Therefore, we develop a feasibility MDP (f-MDP) and
derive the feasibility by learning the optimal policy for the f-MDP. We show that the
policy learned from the demonstrations reweighted by the proposed feasibility score
outperforms other imitation learning methods in various environments and different
compositions of demonstrations.



Chapter 6

Final Words

Imitation learning is a promising learning paradigm for robot learning. However
current imitation learning algorithms only allow the robots to imitate behavior that
is already existing in the demonstrations. This leads to the strong assumption
of the demonstrations being optimal and being collected directly on the robot of
interest. This severely limits the usage of imitation learning in real-world robot
learning problems and also is far from human-level learning ability, where human
beings are born with the ability to reenact others’ behavior without any constraint.
Also, preliminary works [47, 27] show that imperfect demonstrations naturally exist
in the demonstration set, and also demonstrations on the robot of interest are usually
insufficient for imitation learning [52]. Thus, new algorithms need to be designed to
relax this strong assumption.

In general, this thesis is an important step toward the wide applicability of imi-
tation learning. Instead of learning from in-domain and optimal demonstrations as
required by standard imitation learning, this thesis addresses learning from imper-
fect demonstrations, where we can leverage a wider range of demonstrations. We
categorize imperfect demonstrations into suboptimal demonstrations, cross-domain
demonstrations, and infeasible demonstrations and develop algorithms to tackle each
component of imperfect demonstrations respectively.
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6.1 Limitations and Future Work

We propose several algorithms to address learning from imperfect demonstrations;
however, the current algorithms still suffer from several assumptions. Furthermore,
new challenges arise when imperfect demonstrations have multiple modalities. We
would like to discuss the limitations and future directions of the methods discussed in
this thesis.

6.1.1 Learning from Suboptimal Demonstrations

Although CAIL is a flexible framework to address the problem of imitation learning
from demonstrations with varying optimality, it is still limited in a few ways: To learn a
well-performing policy, we still require that the dataset consists of demonstrations that
encode useful knowledge for policy learning. We also require that the demonstrations
and the imitation agent have the same dynamics. In the future, we plan to learn from
demonstrations with more failures and relax the assumptions of the demonstrator and
imitator having the same dynamics.

For the adversarial confidence transfer method, we still require the source and target
environments to be correspondent. In the future, we plan to relax this assumption by
defining weaker correspondence only between confidence instead of the strict definition
of correspondence on dynamics.

6.1.2 Learning from Cross-Domain Demonstrations

Though we leverage the easy-to-access weak supervision to improve correspondence
learning, this type of supervision still requires domain knowledge or human experts to
annotate. One potential future direction is to learn from unlabeled or unpaired data.
In the future, we also plan to automatically detect the abstraction needed for weak
supervision and try to reduce the size of the required annotation to ease the labor
work.
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6.1.3 Learning from Infeasible Demonstrations

Our methods for learning from infeasible demonstrations only address the problem
of filtering out far from feasible demonstrations but do not solve the problem of
learning a policy from those demonstrations that are feasible but suboptimal. There
are situations where demonstrations are feasible but not optimal for the imitator,
especially when the ability of the demonstrator is more restricted than the imitator.
In the future, we aim to study these more general settings.

6.1.4 Future Work on Learning from Multimodal Imperfect

Demonstrations

In all of the methods discussed in this thesis, the state space or the observation space
for each environment only contains one modality, such as the joint state or the RGB
image. However, in practice, we may have demonstrations with a multi-modal state.
For example, in a driving scenario, besides the RGB modality, we can have depth
and lidar modalities to provide more information for decision-making. The multiple
modalities introduce new challenges for learning from imperfect demonstrations. As
demonstrated in [29], within the multiple modalities, there exist modalities that
provide no new useful information. Such extraneous modalities can cause the policy to
overfit the training data and lead to poor generalizability of the learned policy. Thus,
it is a potential future direction for imperfect demonstrations to remove the influence
of these extraneous modalities.

6.2 Closing Thoughts

This thesis is only a step towards addressing learning from imperfect demonstrations,
which we believe to be an important challenge for the general applicability of imitation
learning or even for developing human-level intelligence robots. As we discussed in
this chapter, there are still many limitations and challenges that need to be addressed
for a general framework of learning from imperfect demonstrations. These challenges
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still need further research and investigation from both the machine learning and the
robotics community and need collaborations of researchers from different fields.



Appendix A

Proofs

A.1 Proof of Theoretical Results in Section 3.3

In this section, we provide the proofs of the theorems proposed in this paper.

A.1.1 Preliminaries

Definition 1. (Lipschitz-smooth) Function f(x) : Rd → R is Lipschitz-smooth with
constant L if

||∇f(x)−∇f(y)|| ≤ L||x− y||, ∀x, y ∈ Rd (A.1)

Lemma 1. If function f(x) is Lipschitz-smooth with constant L, then the following
inequality holds:

(∇f(x)−∇f(y))T (x− y) ≤ L||x− y||2 (A.2)

Proof. The proof is straightforward that

(∇f(x)−∇f(y))T (x− y)

≤ ||∇f(x)−∇f(y)|| · ||x− y||
≤ L||x− y||2

(A.3)

The first equation follows from the Cauchy-Schwarz inequality, and the second in-
equality comes from the definition of Lipschitz-smooth.
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Lemma 2. If function f(x) is Lipschitz-smooth with constant L, then the following
inequality holds:

f(y) ≤ f(x) +∇f(x)T (y − x) +
L

2
||y − x||2, ∀x, y (A.4)

Proof. Define g(t) = f(x + t(y − x)). If f(x) is Lipschitz-smooth with constant L,
then from Lemma 1, we have

g′(t)− g′(0)

= (∇f(x+ t(y − x))−∇f(x))T (y − x)

=
1

t
(∇f(x+ t(y − x))−∇f(x))T ((x+ t(y − x))− x)

≤ L

t
||t(y − x)||2 = tL||y − x||2

(A.5)

We then integrate this equation from t = 0 to t = 1:

f(y) = g(1) = g(0) +

∫ 1

0

g′(t)dt

≤ g(0) +

∫ 1

0

g′(0)dt+

∫ 1

0

tL||y − x||2dt

= g(0) + g′(0) +
L

2
||y − x||2

= f(x) +∇f(x)T (y − x) +
L

2
||y − x||2

(A.6)

A.1.2 Main Proofs

Theorem 3. (Convergence) Suppose the outer loss Lout is Lipschitz-smooth with
constant L, the inequality

∇θLout(θτ+1)
⊤∇θLin(θτ , βτ+1) ≥ C||∇θLin(θτ , βτ+1)||2 (A.7)
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holds for a constant C ≥ 0 in every step τ 1, and the learning rate satisfies µ ≤ 2C
L

,
then the outer loss decreases along with each iteration: Lout(θτ+1) ≤ Lout(θτ ), and the
equality holds if ∇βLout(θτ ) = 0 or θτ+1 = θτ .

Proof. Since Lout is Lipschitz-smooth, following Lemma 2, we have

Lout(θτ+1)− Lout(θτ )

≤ ∇θLout(θτ )
T (θτ+1 − θτ ) +

L

2
||(θτ+1 − θτ )||2

= −µ∇θLout(θτ+1)
T∇θLin(θτ , βτ+1)

+
L

2
µ2||∇θLin(θτ , βτ+1)||2

≤ −
(
µC − L

2
µ2

)
||∇θLin(θτ , βτ+1)||2

≤ 0

(A.8)

The first inequality comes from Lemma 2, and the second inequality holds because
we update θτ to θτ+1 only when ∇θLout(θτ+1)

T∇θLin(θτ , βτ+1) ≥ C||∇θLin(θτ , βτ+1)||2
holds, otherwise θτ+1 = θτ so Lout(θτ+1) = Lout(θτ ). The third inequality holds
because we choose the learning rate to satisfy µ ≤ 2C

L
.

Then if ∇θLout(θτ ) = 0, and if Eqn. (A.7) is satisfied, we have ∇θLin(θτ , βτ+1) = 0.
Following the updating rule of α in Eqn. (10), we can derive θτ+1 = θτ , so Lout(θτ+1) =

Lout(θτ ). Besides, if Eqn. (11) is not satisfied, we also have θτ+1 = θτ , and thus
Lout(θτ+1) = Lout(θτ ).

We now provide the proof of Theorem 2 on the convergence rate of the algorithm.

Theorem 4. (Convergence Rate) Under the assumptions in Theorem 3, let

g(θ, β) = θ − µ∇θLin(s, a; θ, β). (A.9)

We assume that Lout(g(θ, β)) is Lipschitz-smooth w.r.t. β with constant L1, Lin and
Lout have σ-bounded gradients, and the norm of ∇β∇θLin(θ; β) is bounded by σ1. L is

1We remove (s, a) in Lin for notation simplicity.
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the Lipschitz-smooth constant for Lout w.r.t. g(θ, β) as shown in Theorem 3. Consider
the total training steps as T , we set α = C1√

T
, for some constant C1 where 0 < C1 ≤ 2

L1

and µ = C2

T
for some constant C2. CAIL can achieve:

min
1≤τ≤T

E[||∇βLout(θτ )||2] ≤ O

(
1√
T

)
. (A.10)

Proof. According to the update rule of θ, we have

Lout(θτ+1)− Lout(θτ )

= Lout(θτ − µ∇θLin(θτ , βτ+1))

− Lout(θτ−1 − µ∇θLin(θτ−1, βτ ))

= {Lout(θτ − µ∇θLin(θτ , βτ+1))

− Lout(θτ−1 − µ∇θLin(θτ−1, βτ+1))}
+ {Lout(θτ−1 − µ∇θLin(θτ−1, βτ+1))

− Lout(θτ−1 − µ∇θLin(θτ−1, βτ ))}
= {Lout(g(θτ , βτ+1))− Lout(g(θτ−1, βτ+1))}
+ {Lout(g(θτ−1, βτ+1))− Lout(g(θτ−1, βτ ))}

(A.11)

We remove (s, a) in the Lin for notation convenience. For the first term,

Lout(g(θτ , βτ+1))− Lout(g(θτ−1, βτ+1))

≤ ∇Lout(g(θτ−1, βτ+1))
T∆g +

L

2
||∆g||2

(A.12)

where
∆g = g(θτ , βτ+1)− g(θτ−1, βτ+1)

= [θτ − µ∇θLin(θτ , βτ+1)]

− [θτ−1 − µ∇θLin(θτ−1, βτ+1)]

= −µ[∇θLin(θτ , βτ+1) +∇θLin(θτ−1, βτ )

−∇θLin(θτ−1, βτ+1)]

(A.13)

Since Lin has σ-bounded gradients, we take the norm on both sides and use the triangle
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inequality, so

||∆g|| ≤ 3µσ (A.14)

Substitute this into Eqn. (A.12), we have

Lout(g(θτ , βτ+1))− Lout(g(θτ−1, βτ+1))

≤ 3µσ2 +
9

2
Lµ2σ2

(A.15)

And for the second term,

Lout(g(θτ−1, βτ+1))− Lout(g(θτ−1, βτ ))

≤ ∇βLout(g(θτ−1, βτ ))
T (βτ+1 − βτ ) +

L1

2
||βτ+1 − βτ ||2

= −α∇βLout(g(θτ−1, βτ ))
T∇βLout(g(θτ , βτ ))

+
L1α

2

2
||∇βLout(g(θτ , βτ ))||2

= −(α− L1α
2

2
)||∇βLout(g(θτ , βτ ))||2

+ α(∇βLout(g(θτ , βτ ))−∇βLout(g(θτ−1, βτ )))
T∇βLout(g(θτ , βτ ))

(A.16)

Since ∇β∇θLin(θ, β) is bounded by σ1 and L has σ-bounded gradients, then

∇βLout(g(θ, β))

= ∇βg(θ, β)
T∇gLout(g(θ, β))

= −µ∇β∇θLin(θ, β)
T∇gLout(g(θ, β))

≤ µσσ1

(A.17)

So
Lout(g(θτ−1, βτ+1))− Lout(g(θτ−1, βτ ))

≤ −(α− L1α
2

2
)||∇βLout(g(θτ , βτ ))||2

+ 2αµσσ1

(A.18)
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Combining the two parts, we can derive that

Lout(θτ+1)− Lout(θτ )

≤ −(α− L1α
2

2
)||∇βLout(g(θτ , βτ ))||2

+ 3µσ2 +
9

2
Lµ2σ2 + 2αµσσ1

(A.19)

Summing up both sides from τ = 1 to T , and rearranging the terms, we can derive
that

T∑
τ=1

(α− L1α
2

2
)||∇βLout(θτ )||2

≤ Lout(θ1)− Lout(θT+1) + T

(
3µσ2 +

9

2
Lµ2σ2 + 2αµσσ1

) (A.20)

Since α− L1α2

2
≥ 0, we have

min
τ

E[||∇βLout(θt)||2]

≤
∑T

τ=1(α− L1α2

2 )||∇βLout(θt)||2

T (α− L1α2

2 )

≤ 1

Tα(1− L1α
2 )

[Lout(θ1)− Lout(θT+1)

+T

(
3µσ2 +

9

2
Lµ2σ2 + 2αµσσ1

)]
≤ 1

α
√
T (
√
T − 1)

[Lout(θ1)− Lout(θT+1)

+T

(
3µσ2 +

9

2
Lµ2σ2 + 2αµσσ1

)]
=
Lout(θ1)− Lout(θT+1)

α
√
T (
√
T − 1)

+
σµ
√
T

α(
√
T − 1)

(
3σ +

9

2
Lµσ + 2ασ1

)
=
Lout(θ1)− Lout(θT+1)

C1(
√
T − 1)

+
σC2

C1(
√
T − 1)

(
3σ +

9

2
Lµσ + 2ασ1

)
= O

(
1√
T

)

(A.21)

The second inequality holds since 1− L1α
2
≥ 1− 1√

T
.
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Theorem 5. RK in Eqn. (14) in the main text is Lipschitz.

Proof. We consider the case where ηξi > ηξj . The case for ηξi <= ηξj can be demon-
strated similarly. We prove that RK is Lipschitz by definition. Let z = ξ′i − ξ′j, the
derivative of RK is

▽RKz =



0 z > ϵ,

1
2ϵ
(z − ϵ) −ϵ ≤ z ≤ ϵ,

−1 z < −ϵ

Thus, the second-order derivative of RK satisfies that |▽(▽RKz)z| ≤ 1
2ϵ

. If we take
L > 1

2ϵ
, then ∀z1, z2, |▽(z1) − ▽(z2)| < L|z1 − z2|. This proves that RK is Lipschitz

smooth.



Appendix B

Algorithm

B.1 Algorithm for Section 3.2

The detailed description of the algorithm is shown in Algorithm 1.

Algorithm 1: Algorithm
Input: Demonstrations Ξ
Compute the optimality ∀ξ in Ξ using Eqn. (3.1)
Derive the probability distribution pw as pwi

= wi∑
i wi

while not converging do
Train π with a state-based imitation learning algorithm with state
transitions sampled from pw;

end
Output: Learned optimal policy π∗.

B.2 Algorithm for Section 3.4

We go through the steps of the algorithm of learning from imperfect demonstrations
via adversarial confidence transfer in Algorithm 2. Lines 2-6 show the first stage of our
framework as in Fig. 3.7 (left): training Esrc with source confidence-labeled data. Lines
7-14 show the process of the second stage in Fig. 2 (left): aligning the distribution of
source and target state-action pairs in the common latent space. Lines 8-11 and Lines
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12-14 show we iteratively update the target encoder E and the discriminators Dk and
D′

k.
After we learn the confidence prediction function F (E), we predict the confidence

for each state-action pair in the target demonstrations and conduct standard imitation
learning on the re-weighted target demonstrations similar to the approaches in Sec. 3.2
and 3.3.

Algorithm 2: Algorithm for learning the target confidence predictor
Input: The demonstration set of the source environment Ξsrc and of the

target environment Ξ. The confidence function csrc for the source
environment.

Initialize Esrc, E, F , Di −DK and D′
i −D′

k;
while not converging do

Sample a batch of state-action pairs {(ssrc, asrc)} from Ξsrc;
Compute the confidence for state-action pairs in {(ssrc, asrc)} with csrc;
Train Esrc and F with {((ssrc, asrc), csrc(ssrc, asrc))} according to the loss in
Eqn. (1) and the optimization objective in Eqn. (4);

end
Fix the parameters of Esrc and F . while not converging do

for k = 1→ K do
Sample a batch of partial trajectories {(s1, a1, . . . , sk, ak)} with length
k;

end
Train E with partial trajectories of all lengths:
{(s1, a1, . . . , sk, ak)}|k=1,··· ,K according to the loss in Eqn. (2) and (3),
and the optimization objective in Eqn. (6);

for k = 1→ K do
Train Dk and D′

k with the partial trajectories {(s1, a1, . . . , sk, ak)}
according to the loss in Eqn. (2) and (3), and the optimization
objective in Eqn. (5);

end
end
Output: The target confidence predictor F ◦ E.
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B.3 Algorithm for Section 5.3

We go through the steps of the algorithm of learning feasibility to imitate demonstrators
with different dynamics in Algorithm 3. For the state-based imitation learning
algorithm used to learn the final policy from reweighted demonstrations, we use the
state-based GAIL as [10]. Lines 1-6 show the process of constructing N f-MDPs (one
for each demonstrator) and training the optimal policy for each f-MDP. Line 7 shows
how to compute feasibility with the optimal policy for each f-MDP. Lines 8-11 show
imitation learning over the newly reweighted demonstrations.

Algorithm 3: Algorithm
Input: Demonstrations Ξj from each demonstratorMd

j , (1 ≤ j ≤ N).
for j=1 to N do

Construct the trajectory f-MDP M f
j based on the demonstration set Ξj

according to Eqn. (2);
Train an optimal policy π∗

j for the trajectory f-MDP M f
j ;

Compute the feasibility w(ξj) for each trajectory ξj ∈ Ξj as in Eqn. (3);
Assign the feasiblity w(ξj) to each state transitions in ξj;

end

Compute pw((s
d
t , s

d
t+1))←

w((sdt ,s
d
t+1))∑

(sdt′ ,s
d
t′+1)∈T

w((sd
t′ ,s

d
t′+1

))

while not converging do
Sample a batch of state transitions from pw;
Train π with the sampled batch of state transitions by a state-based
imitation learning algorithm: state-based GAIL

min
θπ

max
θd

E(st,st+1)∼π(log(D(st, st+1))) + E(st,st+1)∼pw(1− log(D(st, st+1))),

(B.1)
where θπ is the parameter of π and θd is the parameter for the
discriminator D in state-based GAIL;

end
Output: Learned optimal policy π∗ forMi.

Currently, we consider the state transitions in each trajectory to share the same
feasibility but do not consider the case where parts of the trajectories are more feasible
than some other parts. This is because the state-based GAIL in our algorithm as
well as many standard imitation learning algorithms rely on learning from the full
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trajectory from the start to the end state. If a segment of the trajectory is far from
feasible or harmful, then the remaining part is also not going to be useful for our
algorithm. Therefore, we only learn from trajectories that are helpful in all parts.
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