
Reinforcement Learning based Control of
Imitative Policies for Near-Accident Driving

Zhangjie Cao∗1, Erdem Bıyık∗2, Woodrow Z. Wang1,
Allan Raventos3, Adrien Gaidon3, Guy Rosman3, Dorsa Sadigh1,2

1Computer Science, Stanford University, 2Electrical Engineering, Stanford University, 3Toyota Research Institute
Emails: {caozj18, ebiyik, wwang153, dorsa}@stanford.edu, {allan.raventos, adrien.gaidon, guy.rosman}@tri.global

∗ First two authors contributed equally to this work.

Abstract—Autonomous driving has achieved significant
progress in recent years, but autonomous cars are still unable to
tackle high-risk situations where a potential accident is likely. In
such near-accident scenarios, even a minor change in the vehicle’s
actions may result in drastically different consequences. To avoid
unsafe actions in near-accident scenarios, we need to fully explore
the environment. However, reinforcement learning (RL) and
imitation learning (IL), two widely-used policy learning methods,
cannot model rapid phase transitions and are not scalable to fully
cover all the states. To address driving in near-accident scenarios,
we propose a hierarchical reinforcement and imitation learning
(H-REIL) approach that consists of low-level policies learned by
IL for discrete driving modes, and a high-level policy learned by
RL that switches between different driving modes. Our approach
exploits the advantages of both IL and RL by integrating them
into a unified learning framework. Experimental results and
user studies suggest our approach can achieve higher efficiency
and safety compared to other methods. Analyses of the policies
demonstrate our high-level policy appropriately switches between
different low-level policies in near-accident driving situations.

I. INTRODUCTION

Recent advances in learning models of human driving behavior
have played a pivotal role in the development of autonomous
vehicles. Although several milestones have been achieved (see
[1]–[12] and references therein), the current autonomous vehi-
cles still cannot make safe and efficient decisions when placed
in a scenario where there can be a high risk of an accident (a
near-accident scenario). For example, an autonomous vehicle
needs to be able to coordinate with other cars on narrow
roads, make unprotected left turns in busy intersections, yield
to other cars in roundabouts, and merge into a highway in
a short amount of time. The left panel of Fig. 1 shows a
typical near-accident scenario: The ego car (red) wants to
make an unprotected left turn, but the red truck occludes the
oncoming blue car, making the ego car fail to notice the blue
car, which can potentially result in a collision. Clearly, making
suboptimal decisions in such near-accident scenarios can be
dangerous and costly, and is a limiting factor on the road to
safe wide-scale deployment of autonomous vehicles.

One major challenge when planning for autonomous ve-
hicles in near-accident scenarios is the presence of phase
transitions in the car’s policy. Phase transitions in autonomous
driving occur when small changes in the critical states – the
ones we see in near-accident scenarios – require dramatically
different actions of the autonomous car to stay safe. For
example, the speed of the blue car in Fig. 1 can determine

the ego car’s policy: if it slows down, the ego car can proceed
forward and make the left turn; however, a small increase in its
speed would require the ego car to stop and yield. The rapid
phase transition requires a policy that can handle such non-
smooth transitions. Due to the non-smooth value function, an
action taken in one state may not generalize to nearby states.
Hence, when training a policy, our algorithms must be able to
visit and handle all the critical states individually, which can
be computationally inefficient.

Reinforcement learning (RL) [12]–[14] and imitation learn-
ing (IL) [1]–[3], [15]–[24] are two promising learning-based
approaches for autonomous driving. RL explores the state-
action space to find a policy that maximizes the reward signals
while IL imitates the behavior of the agent from expert demon-
strations. However, the presence of rapid phase transitions
makes it hard for RL and IL to capture the policy because they
learn a smooth policy across states. Furthermore, to achieve
full coverage, RL needs to explore the full environment while
IL requires a large amount of expert demonstrations covering
all states. Both are prohibitive since the state-action space in
driving is continuous and extremely large.

In this paper, our key insight is to model phase transitions as
optimal switches, learned by reinforcement learning, between
different modes of driving styles, each learned through imita-
tion learning. In real world driving, various factors influence
the behaviors of human drivers, such as efficiency (time to
destination), safety (collision avoidance), etc. Different modes
characterize different trade-offs of all factors. For example,
the aggressive mode cares more about efficiency so it always
drives fast in order to reach the destination in minimal time.
The timid mode cares more about safety, so it usually drives
at a mild speed and pays attention to all potential threats.
Switching from one mode to another can model the rapid phase
transition conditioned on the environment changes.

Using these modes, we propose a new algorithm Hierar-
chical Reinforcement and Imitation Learning (H-REIL),
which is composed of a high-level policy learned with RL
that switches between different modes and low-level policies
learned with IL, each of which represents a different mode.

Using our proposed approach, the low-level policy for each
mode can be efficiently learned with IL even with only a
few expert demonstrations, since IL is now learning a much
simpler and specific policy by sticking to one driving style
with little phase transition. We emphasize that RL would not
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Fig. 1. The left part of the figure is a typical near-accident scenario: The ego car (red car) turns left but the truck occludes the blue car, which causes the ego
car to overlook the blue car and collide with it at time step 5. The right part of the figure is the overall architecture of the proposed hierarchical reinforcement
learning and imitation learning model. The right green square shows the low-level imitation learning part, where the low-level policies are learned by the
conditional imitation framework. All the policies share the same feature extractor and split to different branches in later layers for action prediction, where
each corresponds to one mode. The branch is selected by external input ah from high-level reinforcement learning. The low-level policies are learned from
expert demonstrations by imitation learning. The left blue square shows the high-level reinforcement learning part, where the high-level agent interacts with
the environment to learn the high-level policy, which selects the best low-level policy branch through the high-level action ah at different states.

be a reasonable fit for learning the low-level policies as it is
difficult to define the reward function. For example, designing
a reward function for the aggressive mode that exactly matches
an aggressive human driver’s behavior is non-trivial.

For the high-level policy, RL is a better fit since we need to
learn to maximize the return based on a reward that contains
a trade-off between various terms, such as efficiency and
safety. Furthermore, the action space is now reduced from a
continuous space to a finite discrete space. IL does not fit to the
high-level policy, because it is not natural for human drivers
to accurately demonstrate how to switch driving modes.

We therefore combine RL at the high-level and IL at the
low-level in our proposed hierarchical model, which can utilize
both approaches and learn driving policies in a wide variety
of settings, including near-accident driving scenarios.

Our main contributions in this paper are three-fold:
• We develop a Hierarchical Reinforcement and Imita-

tion Learning (H-REIL) approach composed of a high-
level policy learned with RL, which switches optimally
between different modes, and low-level policies learned
with IL, which represent driving in different modes.

• We demonstrate and assess our proposed H-REIL model
on two different driving simulators in a set of near-
accident driving scenarios. Our simulations demonstrate
that the learned hierarchical policy outperforms imitation
learning policies, the individual policies learned for each
mode, and a policy based on random mixtures of modes,
in terms of efficiency and safety.

• We finally conduct a user study in which human sub-
jects compare trajectories generated by H-REIL and the
compared methods to demonstrate H-REIL’s ability to
generate safe and efficient policies. The results show the
users significantly prefer the H-REIL driving policies
compared to other methods in near-accident scenarios.

II. RELATED WORK

Rule-based Methods. Traditional autonomous driving tech-
niques are mostly based on manually designed rules [25]–[27].
However, it is tedious, if not impossible, to enumerate all the

driving rules and norms to deal with all the states. Therefore,
rule-based methods often cause the vehicle to drive in an
unnatural manner or completely fail in unexpected edge cases.
Imitation Learning (IL). ALVINN was one of the first
instances of IL applied to driving [1]. Following ALVINN,
Muller et al. [28] solved off-road obstacle avoidance using
behavior cloning. IL learns driving policies on datasets con-
sisting of off-policy state-action pairs. However, they suffer
from potential generalization problems to new test domains
due to the distribution shift. Ross et al. [29] address this
shortcoming by iteratively extending the base dataset with on-
policy state-action pairs, while still training the base policy
offline with the updated dataset. Bansal et al. [17] augment
expert demonstrations with perturbations and train the IL
policy with an additional loss penalizing undesired behavior.
Generative Adversarial Imitation Learning [30], [31] proposes
to match the state-action occupancy between trajectories of the
learned policy and the expert demonstrations.

A major shortcoming of IL is that it requires a tremendous
amount of expert demonstrations. Conditional imitation learn-
ing (CoIL) [15] extends IL with high-level commands and
learns a separate IL model for each command. Although it
improves data-efficiency, high-level commands are required at
test time, e.g., the direction at an intersection. In our setting,
each high-level command corresponds to a different driving
mode. Instead of depending on drivers to provide commands,
we would like to learn the optimal mode-switching policy.
Inverse Reinforcement Learning (IRL). Originally proposed
to address the learning problem in a Markov decision process
(MDP) without an explicitly given reward function [32], IRL
aims to recover the reward function from expert demonstra-
tions. The reward is typically represented by a weighted sum
of several reward features relevant to the task. IRL learns those
weights by observing how experts perform the task. Abbeel
and Ng [32] tune the weights to match the expected return
of the expert trajectories and the optimal policy. Ziebart et al.
[33] further add a maximum entropy regularization. Following
[34], Finn et al. [35] improve the optimization in [33].

Similar to IL, IRL also suffers from the requirement of a



large amount of expert demonstrations. It is also difficult and
tedious to define reward features that accurately characterize
efficiency and safety in all scenarios. Thus, IRL is not fit for
learning driving policies in near-accident scenarios.
Reinforcement Learning (RL). RL has been applied to learn
autonomous driving policies [14], [36]–[38]. RL explores the
environment to seek the action that maximizes the expected
return for each state based on a pre-defined reward function.
However, it suffers from the fact that the state-action space
for driving is extremely large, which makes it very inefficient
to explore. Chen et al. [36] try to alleviate this problem
by augmenting RL with Model Predictive Control (MPC) to
optimally control a system while satisfying a set of constraints.
Tram et al. [39] combine RL with MPC to shrink the action
space, however the MPC is based on driving rules, which are
difficult to exhaustively define and enumerate. Finally, Gupta
et al. [40] proposed using RL to fine-tune IL policies for long-
horizon, multi-stage tasks, different than our problem setting.
Hierarchical Reinforcement Learning. Hierarchical RL is
motivated by feudal reinforcement learning [41], which first
proposes a hierarchical structure for RL composing of multiple
layers: the higher layer acts as a manager to set a goal for
the lower layer, which acts as a worker to satisfy the goal.
Hierarchical RL enables efficient exploration for the higher
level with a reduced action space, i.e. goal space, while
making RL in the lower level easier with an explicit and short-
horizon goal. Recent works extended hierarchical RL to solve
complex tasks [42]–[46]. Le et al. [47] proposed a variant
of hierarchical RL, which employs IL to learn the high-level
policy to leverage expert feedback to explore the goal space
more efficiently. Recently, more related to our work, Qureshi
et al. [48] proposed using deep RL to obtain a mixture between
task-agnostic policies. However in our case, low-level policies
are not task-agnostic and are produced by IL on the same
tasks, so it is arguably sufficient to discretely switch between
them. Finally, Nair et al. [49] use expert demonstrations to
guide the exploration of RL.

However, for near-accident scenarios, most off-the-shelf
hierarchical RL techniques do not address the problem of
driving safely and efficiently, because it is difficult to define
the reward function for low-level RL. We instead construct a
hierarchy of RL and IL, where IL is in the low-level to learn a
basic policy for each mode and RL is in the high-level, similar
to [50], to learn a mode switching policy that maximizes the
return based on a simpler pre-defined reward function.

III. MODEL

A. Problem Setting
We model traffic as a partially observable Markov decision
process (POMDP): Pl = 〈S,Ω, O,A, f, R〉 where the agent
is the ego car. The scenario terminates either by a collision,
by reaching the destination, or by a time-out, which forces
the POMDP to be finite horizon. S is the set of states, Ω is
the set of observations, O is the set of conditional observation
probabilities, A is the set of actions, and f is the transition
function. Each state st ∈ S consists of the positions and

velocities of all the vehicles at time step t. Each action
at ∈ A is the throttle and the steering control available for
the ego car. At each time step t, all vehicles move and the
state st is transitioned to a new state st+1 according to f ,
which we model as a probability distribution, P (st+1|st, at) =
f(st, at, st+1), where the stochasticity comes from noise and
the uncertainty about the other vehicles’ actions. The agent
receives an observation ot ∈ Ω with a likelihood conditioned
on the state st, i.e. O(ot|st). For example, if some vehicles
are occluded behind a building, their information is missing in
the observation. Finally, the agent receives a reward R(st, at)
at each time step t, which encodes desirable driving behavior.

B. H-REIL Framework
We design the H-REIL framework using a set of n experts,
each representing its own mode of driving. Following different
modes, the experts are not necessarily optimal with respect
to the true reward function. For example, the modes can
be aggressive or timid driving. We denote the corresponding
policies by π1, . . . , πn; where πi : Ω → A, ∀i. Our goal
is to learn a policy Π that switches between the modes to
outperform all πi in terms of cumulative reward.

As shown in the right panel of Fig. 1, we divide the problem
into two levels where πi |ni=1 are low-level policies learned
with IL using the data coming from experts, and the high-level
agent learns Π with RL using a simulator of the POMDP.
Low-Level Imitation Learning Policy. Unlike [42] and [47],
which employ RL in the low-level of the hierarchy, we employ
IL to learn low-level policies πi, because each low-level
policy sticks to one driving style, which behaves relatively
consistently across states and requires little rapid phase tran-
sitions. Hence, the actions taken in nearby states can generalize
to each other easily. Therefore, the simpler policy can be
learned by IL easily with only a few expert demonstrations
Hi = {oti, ati}|Kt=1, consisting of observation-action pairs for
each mode mi. Here we use Conditional Imitation Learning
(CoIL) [15] as our IL method. We define the loss as

lIL =
1

n

n∑
i=1

1

K

K∑
t=1

`1(ati, πi(o
t
i)), (1)

where we take the mean over L1 distances. As in CoIL, we
model πi |ni=1 using a neural network with branching at the
end. Each branch corresponds to an individual policy πi. We
present the details of the networks in Section IV-F.
High-Level Reinforcement Learning Policy. After training
the low-level policies, we build the high-level part of the
hierarchy: We train a high-level policy Π to select which of
the policies from Sπ = {πi}ni=1 the ego car should follow.
This high-level decision is made every ts time steps of Pl.

We model this high-level problem as a new POMDP, called
P tsh , where the states and observations are the same as the orig-
inal POMDP Pl, but the actions choose which driving mode to
follow. For example, if the action is 2, then the ego car follows
π2 for the next ts time steps in Pl, which is a single time step
in P tsh . Formally, P tsh = 〈S,Ω,O,Ah, f tsh , R

ts
h 〉 and the new

action space Ah is a discrete space, {1, 2, ..., n}, representing



the selection of low-level policies. The new transition function
f tsh (st, ah, s

t+1) gives the probability of reaching st+1 from
st by applying policy πah for ts consecutive time steps in
Pl. Similarly, the new reward function accumulates the reward
from Pl over ts time steps in which the policy πah is followed.

Then, our goal in this high-level hierarchy is to solve:

arg max
Π

E

∑
j

∑
oj

O(oj | sj)Rtsh (sj ,Π(oj))


subject to sj+1 ∼ f tsh (sj ,Π(oj), sj+1) for ∀j (2)

where we use indexing j to denote the time steps of P tsh .
As shown in Fig. 1, we attempt to solve (2) using RL. In
P tsh , the action space is reduced from continuous to discrete,
which eases the efficient exploration of the environment.
Furthermore, it is now much easier to define a reward function
because the ego car already satisfies some properties by
following the policies learned from expert demonstrations.
For example, with a high enough ts, we do not need to
worry about jerk, because the experts naturally give low-jerk
demonstrations. Therefore, we design a simple reward function
consisting of the efficiency and safety terms (Re and Rs). Re is
negative in every time step, so that the agent will try to reach
its destination as quickly as possible. Rs gets an extremely
large negative value if a collision occurs. Otherwise, it is 0.

Besides, setting ts > 1 reduces the number of time steps
in an episode and makes the collision penalty, which appears
at most once per episode, less sparse. With the new action
space, transitions, and reward function, we can train the high-
level policy with any RL algorithm (PPO [51] in this paper).
Algorithm 1 outlines our training algorithm.

Algorithm 1: H-ReIL Training Algorithm
Input: Expert demonstrations H1, ...,Hn, POMDP

P tsh = 〈S,Ω,O,Ah, f tsh , R
ts
h 〉

Output: Low-level policies πi |Ni=1, high-level policy Π
Train low-level policies πi |Ni=1 with demonstrations
Hi |Ni=1 to minimize the loss in Eqn. (1).

Train high-level policy Π using πi |Ni=1 and P tsh
according to (2) with PPO.

return πi |Ni=1 and Π

C. Analysis of H-ReIL
Proposition 1. Let’s consider a POMDP with a fixed finite
horizon T , for which we have n low-level policies. Let’s call
the expected cumulative reward for the optimal and worst
high-level control sequences U∗ and U ′, respectively. If there
exists a scalar a > U∗−U ′ such that the expected cumulative
rewards of keeping the same low-level policy are smaller than
U∗ − a+ a/nT ; then there exists a probability distribution p
such that randomly switching the policies with respect to p is
better than keeping any of the n low-level policies.

Proof: Let p be a uniform distribution among the low-
level policies. Then, each possible control sequence has a
1/nT probability of being realized. This guarantees that the

expected cumulative reward of this random policy is larger
than: nT−1

nT (U∗ − a) + 1
nT (U∗) = U∗ − a+ a/nT .

While this is a worst-case bound, it can be shown that
the expected cumulative reward of a random policy can be
higher if the optimal high-level control sequence is known to
be imbalanced between the modes. In that case, a better lower
bound for random switching is obtained by a p maximizing
the probability of the optimal sequence being realized.

For a different interpretation of H-REIL, one can think of
the true driving reward R as a sum of n different terms; such
as, for n = 2, R(st, at) = Re(s

t, at) + Rs(s
t, at) where

Re denotes the part of the reward that is more associated
with efficiency, and Rs with safety. Then, strictly aggressive
drivers optimize for αRe(st, at) + (2−α)Rs(s

t, at) for some
1 < α ≤ 2, whereas strictly timid drivers try to optimize the
same reward with 0 ≤ α < 1. One may then be tempted
to think there exists a high-level stationary random switching
distribution p that outperforms both the aggressive and timid
drivers, because the true reward function is in the convex hull
of the individuals’ reward functions for each st ∈ S, at ∈ A.
However, even with this reward structure and hierarchy, the
existence of such a p is not guaranteed without the assumptions
of Proposition 1 (or other assumptions).

Remark 1. With the reward structure that can be factorized
such that each mode weighs some terms more than the others
and the true reward is always in the convex hull of them,
there may not exist a high-level stationary random-switching
strategy that outperforms keeping a single low-level policy.

Proof: Consider the 4-state deterministic MDP with a
finite-horizon T shown in Fig. 2. There are only two actions,
represented by solid (a = 1) and dashed (a = 2) lines. The
rewards for each state-action pair are given in a tuple form
r=(Re, Rs) where the true reward is R(st, at) = Re(s

t, at)+
Rs(s

t, at). Consider two modes optimizing αRe(st, at)+(2−
α)Rs(s

t, at), one for α = 1.8 and the other for α = 0.2.
While the former will always take a= 1, the latter will keep
a = 2. Both policies will achieve a true cumulative reward
of 0. Let ts = 1. A stationary random switching policy
cannot outperform those individual policies, because they will
introduce a risk of getting R = −2 from s2 and s4. In fact,
any such policy that assigns strictly positive probabilities to
each action will perform worse than the individual policies.
On the other hand, a policy that outperforms the individual
policies by optimally switching between the modes exists and
achieves T cumulative reward.

Unfortunately, the assumptions of Proposition 1 may not
hold for driving in general, and Remark 1 shows that a
stationary random switching strategy may perform poorly.
Next, we show that the solution to (2) yields a good policy.

Proposition 2. The optimal solution to (2) is at least as good
as keeping the same low-level policy throughout the episode
in terms of the expected cumulative reward.

Proof: Since Π(oj) = i for ∀oj ∈ Ω for any i is a feasible
solution to (2), the optimal solution is guaranteed to be at least



Fig. 2. While random switching cannot guarantee better performance, an
intelligent switching policy outperforms individual low-level policies.

as good as keeping the same low-level policy in terms of the
objective, i.e. the expected cumulative reward.

In H-REIL, we decompose the complicated task of driving
in near-accident scenarios into two levels, where the low-
level learns basic policies with IL to realize relatively easier
goals, and the high-level learns a meta-policy using RL to
switch between different low-level policies to maximize the
cumulative reward. The mode switching can model rapid
phase transitions. With the reduced action space and
fewer time steps, the high-level RL can explore all the
states efficiently to address state coverage. The two-level
architecture makes both IL and RL much easier, and learns a
policy to drive efficiently and safely in near-accident scenarios.

IV. EXPERIMENTS

A video giving an overview of our experiments, as well as
the proposed framework, is at https://youtu.be/CY24zlC HdI.
Below, we describe our experiment settings.
A. Environment
We consider the environment where the ego car navigates in
the presence of an ado car. The framework extends to cases
with multiple environment cars easily. In order to model near-
accident scenarios, we let the ado car employ a policy to
increase the possibility of collision with the ego car.
B. Scenarios
We design five near-accident scenarios, each of which is
visualized in Fig. 3 and described subsequently.
1) Cross Traffic. The ego car seeks to cross the intersection,
but a building occludes the ado car (Fig. 3, row 1).
2) Halting Car. The ego car drives behind the ado car, which
occasionally stops abruptly (Fig. 3, row 2).
3) Wrong Direction. The ado car, which drives in the opposite
direction, cuts into the ego car’s lane (Fig. 3, row 3).
4) Unprotected Turn. The ego car seeks to make a left turn,
but a truck occludes the oncoming ado car (Fig. 3, row 4).
5) Merge. The ego car wants to cut between the ado car and
another car in the front, who follows a fixed driving policy.
However, the ado car can aggressively accelerate to prevent it
from merging (Fig. 3, row 5).

For each scenario, we have two settings: difficult and easy.
The difficult setting is described above where the ado car acts
carelessly or aggressively, and is likely to collide with the
ego car. The easy setting either completely removes the ado
car from the environment or makes it impossible to collide

with the ego car. In simulation, we sample between these two
settings uniformly at random for each scenario. In addition,
we also perturb the initial positions of both cars with some
uniform random noise in their nominal directions.
C. Simulators
CARLO1 is our in-home 2D driving simulator that models
the physics and handles the visualizations in a simplistic way
(see Fig. 5). Assuming point-mass dynamics model as in [52],
CARLO simulates vehicles, buildings and pedestrians.

While CARLO does not provide realistic visualizations
other than two-dimensional diagrams, it is useful for devel-
oping control models and collecting large amounts of data.
Therefore, we use CARLO as a simpler environment where
we assume perception is handled, and so we can directly use
the noisy measurements of other vehicles’ speeds and positions
(if not occluded) in addition to the state of the ego vehicle.

CARLA [53] is an open-source simulator for autonomous
driving research, which provides realistic urban environments
for training and validation of autonomous driving systems.
Specifically, CARLA enables users to create various digital
assets (pedestrians, buildings, vehicles) and specifies sensor
suites and environmental conditions flexibly. We use CARLA
as a more realistic simulator than CARLO.

For both CARLO and CARLA, the control inputs for the
vehicles are throttle/brake and steering.
D. Modes
While H-REIL can be used with any finite number of modes,
we consider two in this paper (n = 2): aggressive and timid
modes. In the former, the ego car favors efficiency over safety:
It drives fast and frequently collides with the ado car. In the
timid mode, the ego car drives in a safe way to avoid all
potential accidents: It slows down whenever there is even a
slight risk of an accident. The high-level agent learns to switch
between the two modes to achieve our final goal: driving safely
and efficiently in near-accident scenarios.

For the near-accident driving setting, having two modes of
driving – aggressive and timid – is arguably the most natural
and realistic choice. Since humans often do not optimize for
other nuanced metrics, such as comfort, in a near-accident
scenario and the planning horizon of our high-level controller
is extremely short, there is a limited amount of diversity that
different modes of driving would provide, which makes having
extra modes unrealistic and unnecessary in our setting.

For our simulations on the first four scenarios (other than
Merge), we collect data from the hand-coded aggressive and
timid modes for the ego car based on rules around the positions
and velocities of the vehicles involved. While both modes try
to avoid accidents and reach destinations; their reaction times,
acceleration rates and willingness to take risks differ.

For the Merge scenario, we collected real driving data from
a driver who tried to drive either aggressively or timidly. We
collected human data only in CARLA due to its more realistic
visualizations and dynamics model.

1Publicly available at https://github.com/Stanford-ILIAD/CARLO.

https://youtu.be/CY24zlC_HdI
https://github.com/Stanford-ILIAD/CARLO


Average Episode Rew. Collision Rate Completion Time (s)

C
ro

ss
 T

ra
ffi

c
H

al
tin

g 
C

ar
W

ro
ng

 D
ir

ec
tio

n
U

np
ro

te
ct

ed
 T

ur
n

Scenario

Faster
Than
Timid

Ego

Ado

Ego

Ado

Ado

Ego

Ego

Ado

Almost
as Safe

as TimidHighest
Reward

H-ReIL

M
er

ge
Random

Fig. 3. The scenario illustration, average episode reward, collision rate, completion time for each scenario and each policy in CARLA simulator. In the
scenario visualizations, the ego car is always red and the ado car is blue.

In each of the first four scenarios, we separately collect
aggressive and timid driving data as expert demonstrations for
the aggressive and timid modes, denoted by Hagg and Htim,
respectively. In CARLO, which enables fast data collection,
we collected 80000 episodes per mode. In CARLA, which
includes perception data, we collected 100 episodes per mode.

E. Compared Methods
We compare H-REIL with the following policies:

1) IL. πIL trained on the mixture of aggressive and timid
demonstrations Hagg and Htim.

2) AGGRESSIVE. πagg trained only on Hagg with IL.
3) TIMID. πtim trained only on Htim with IL.

4) RANDOM. Πrand which selects πagg or πtim at every
high-level time step uniformly at random.

F. Implementation Details
CARLO. The observations include ego car location and ve-
locity. They also include the location and the velocity of the
ado car, if not occluded, perturbed with Gaussian noise.

These are then fed into a neural network policy with two
fully-connected hidden layers to output the high-level decision.
The same information are also fed into a neural network with
only a single fully-connected hidden layer to obtain features.
Depending on the high-level mode selection, these features are
then passed into another fully connected neural network with
a single hidden layer, which outputs the controls.
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Fig. 4. The plots of velocity vs position of the ego car under Halting Car and Wrong Direction scenarios with TIMID, AGGRESSIVE, IL and H-REIL in
CARLO. The green and red colors correspond to the selections of timid and aggressive modes, respectively. The black crosses show collisions where the
episode terminates. The episode also terminates when the ego car arrives at the predefined destinations.

CARLA. The observations consist of ego car location, velocity
and a front-view image for the first four scenarios. Merge
scenario has additional right-front and right-view images to
gain necessary information specific to the scenario.

For the first four scenarios, we use an object detection
model, Faster-RCNN with R-50-FPN backbone [54], to detect
the cars in the front-view images and generate a black image
with only the bounding boxes colored white, which we call
the detection image. It provides information of the ado car
more clearly and alleviates the environmental noise. We do
not apply this technique to the Merge scenario because the
ado car usually drives in parallel with the ego car and its
shape is only partially observable in some views. Instead, we
use the original RGB images for the Merge scenario.

We then design another network consisting of a convolu-
tional neural network encoder and a fully-connected network
encoder. The convolutional encoder encodes the detection
image and the fully-connected encoder encodes the location
and velocity information (of the ego car) into features.

The high-level RL policy feeds these features into a fully-
connected network to output which mode the ego car will
follow. We then feed the features to the chosen low-level IL
policy composed of fully-connected layers, at the next ts low-
level time steps to obtain the controls. We use Proximal Policy
Optimization (PPO) [51] for the high-level agent of H-REIL.

For IL, we use a network structure similar to our approach
but without branching since there is no mode selection.

V. RESULTS

A. Simulations
We compare the average episode reward, collision rate, and
completion time of different methods under all scenarios with
both simulators. We compute these metrics for each model and
scenario averaged over 100 test runs.

For the simple reward of the high-level agent, we select
the trade-off between efficiency (time/distance penalty) and
safety (collision penalty) such that the high-level policy cannot
naı̈vely bias to a single low-level policy. The collision rate is
only computed for the episodes with the difficult setting.

As shown in Fig. 3 for CARLA, our H-REIL framework
is better than or comparable to other methods in terms of
the average episode reward under all five scenarios, which
demonstrates the high-level RL agent can effectively learn a
smart switching between low-level policies. H-REIL frame-
work usually outperforms IL with a large margin, supporting
the claim that in near-accident scenarios, training a general-
izable IL policy requires a lot of demonstrations. Inadequate
demonstrations cause the IL policy to fail in several scenarios.

In terms of collision rate and completion time, H-REIL
achieves a collision rate lower than IL, AGGRESSIVE and
RANDOM while comparable to TIMID. H-REIL also achieves
a completion time shorter than IL and TIMID while compara-
ble to RANDOM. These demonstrate H-REIL achieves a good
trade-off between efficiency and safety.
B. User Studies
Having collected real driving data in CARLA for the Merge
scenario, we generated a test set that consists of 18 trajectories
for each of AGGRESSIVE, TIMID, IL and H-REIL. We then
recruited 49 subjects through Amazon Mechanical Turk to
evaluate how good the driving is on a 7-point Likert scale
(1 - least preferred, 7 - most preferred). Figure 6 shows the
users prefer H-REIL over the other methods. The differences
between H-REIL and the other methods are statistically sig-
nificant with p < 0.005 (two-sample t-test).

VI. ANALYSIS

Velocity Analysis. We visualize the relation between the
velocity and the position of the ego car in its nominal direction
in Fig. 4 for the Halting Car and the Wrong Direction scenarios
in CARLO. We selected these two scenarios for visualization
as the ego does not change direction.

We observe TIMID always drives with a relatively low speed
while AGGRESSIVE drives fast but collides with the ado car
more often. Compared with these two, H-REIL and IL drive
at a medium speed while H-REIL achieves a relatively higher
speed than IL with comparable number of accidents.

In particular, there is an obvious phase transition in both
scenarios (about [35, 75] for the Halting Car and [25, 45] for
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Fig. 6. User study results are shown. Users rate H-REIL significantly higher
than the other methods (p < 0.005).

the Wrong Direction) where a collision is very likely to occur.
Baseline models learned by plain IL, cannot model such phase
transitions well. Instead, H-REIL switches the modes to model
such phase transitions: it selects the timid mode in the risky
states to ensure safety while selecting the aggressive policy
in other states to maximize efficiency. This intelligent mode
switching enables H-REIL to drive reasonably under different
situations: slowly and cautiously under uncertainty, and fast
when there is no potential risk.
Policy Visualization. We visualize the locations of the cars in
Fig. 5 in CARLO. We observe that H-REIL usually chooses
the timid policy at the areas that have a collision risk while
staying aggressive at other locations when it is safe to do
so. These support that our high-level policy makes correct
decisions under different situations.
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Fig. 7. The completion rate with varying time limits. The completion rate
is the proportion of the trajectories in which the ego car safely reaches the
destination within the time limit.

Completion within Time Limit. We plot the completion rate
with respect to varying time limits for the ego car in Fig. 7 in
CARLA for the Cross Traffic scenario. The completion rate
is the portion within 500 runs that the ego car reaches the

destination within the time limit. Overall, we observe H-REIL
achieves the best trade-off. While AGGRESSIVE achieves
higher completion rates for the low time limits, it cannot
improve further with the increasing limit with collisions.

We also observe the trajectories of IL are divided into two
clusters. The group that achieves lower time limit (20-22s)
imitates the aggressive policy more but has lower completion
rate. The other group that corresponds to the higher time
limit (25-28s) imitates the timid policy more but has better
completion rate. This demonstrates IL directly imitates the
two modes and learns a mild aggressive or a mild timid policy
while it does not learn when to use each mode. On the other
hand, H-REIL consistently achieves higher or comparable
completion rate than IL and RANDOM, showing that our high-
level RL agent can learn when to switch between the modes
to safely arrive at the destination efficiently.

VII. CONCLUSION

Summary. In this work, we proposed a novel hierarchy with
reinforcement learning and imitation learning to achieve safe
and efficient driving in near-accident scenarios. By learning
low-level policies using IL from drivers with different charac-
teristics, such as different aggressiveness levels, and training
a high-level RL policy that makes the decision of which low-
level policy to use, our method H-REIL achieves a good trade-
off between safety and efficiency. Simulations and user studies
show it is preferred over the compared methods.
Limitations and Future Work. Although H-REIL is gener-
alizable to any finite number of modes, we only considered
n=2. Having more than 2 modes, for which our preliminary
experiments have given positive results, can be useful for
other robotic tasks. Also, we hand-designed the near-accident
scenarios in this work. Generating them automatically as in
[55] could enable broader evaluation in realistic scenarios.
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